Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202301594, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38452280

ABSTRACT

The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb2O5 with different crystal phases was studied. Nb2O5 particles were synthesized using hydrothermal methods, where it was observed that changes in the solvent control their morphology and crystal phase. Different photocatalytic behavior of Nb2O5 was observed with the selected model compounds, indicating that its selection directly impacts the resulting conversion and selectivity rates as well as the reaction pathway, highlighting the relevance of model molecule selection. Photocatalytic conversion of phenol showed conversion rate (C%) up to 25 % after 2 h irradiation and high selectivity (S%) to pyrogallol (up to 50 %). Orthorhombic Nb2O5 spheres favored conversion through free hydroxyl radicals while monoclinic rods did not convert phenol. Guaiacol photocatalytic oxidation showed high conversion rate but lower selectivity. Orthorhombic and monoclinic Nb2O5 favored the formation of resorcinol with S % ~0.43 % (C % ~33 %) and ~13 % (C % ~27 %) respectively. The mixture of both phases enhanced the guaiacol conversion rate to ~55 % with ~17 % of selectivity to salicylaldehyde. The use of radical scavengers provided information to elucidate the reaction pathway for these model compounds, showing that different reaction pathways may be obtained for the same photocatalyst if the model compound is changed.

2.
Heliyon ; 7(12): e08494, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34934831

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) are an alternative for storage with low cost, eco-friendly, and good performance for both process adsorption and desorption. Herein, a purification procedure of MWCNTs was successfully described and studied by using XRD, TEM, Raman spectroscopy and by means of N2 adsorption-desorption isotherms using the BET method. The H2 storage properties at room temperature of the purified carbon nanotubes exposed to gas under pressures between 0.39 and 13.33 kPa was investigated by using the quartz crystal microbalance technique. It was found that the H2 adsorption capacity is strongly dependent on the morphological and structural characteristics of the carbon nanotubes and their specific surface area. The best sample with specific surface area of 729.4 ± 3 m2 g-1 shows a maximum adsorption capacity of 3.46 wt% at 12.79 kPa of H2 exposure pressure. The adsorption kinetics (t95%) from the different purified MWCNTs was also investigated as a function of the H2 exposure pressure as well as the performance of these MWCNTs on the reversibility of the H2 loading/unloading process when underwent to successive cycles of gas exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...