Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 30(2): 443-454, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38321220

ABSTRACT

Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Animals , Mice , Humans , Macular Edema/drug therapy , Macular Edema/etiology , Diabetic Retinopathy/drug therapy , Angiogenesis Inhibitors/therapeutic use , Endothelial Cells , Senotherapeutics , Cellular Senescence
2.
J Neuroinflammation ; 20(1): 145, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344842

ABSTRACT

Cellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation. Here, we demonstrate that cells of the innate immune system require activity of the inositol-requiring enzyme 1α (IRE1α/XBP1) axis in order to initiate HIF1α-dependent production of cytokines such as IL1ß, IL6 and VEGF-A. Knockout of either HIF1α or IRE1α in myeloid cells ameliorates vascular phenotypes in a model of retinal pathological angiogenesis driven by sterile inflammation. Thus, pathways associated with ER stress, in partnership with HIF1α, may co-regulate immune adaptation to low oxygen.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/genetics , Hypoxia , Oxygen/metabolism , Myeloid Cells/metabolism , Inflammation/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit
3.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36787231

ABSTRACT

Pathological neovascularization in age-related macular degeneration (nvAMD) drives the principal cause of blindness in the elderly. While there is a robust genetic association between genes of innate immunity and AMD, genome-to-phenome relationships are low, suggesting a critical contribution of environmental triggers of disease. Possible insight comes from the observation that a past history of infection with pathogens such as Chlamydia pneumoniae, or other systemic inflammation, can predispose to nvAMD in later life. Using a mouse model of nvAMD with prior C. pneumoniae infection, endotoxin exposure, and genetic ablation of distinct immune cell populations, we demonstrated that peripheral infections elicited epigenetic reprogramming that led to a persistent memory state in retinal CX3CR1+ mononuclear phagocytes (MNPs). The immune imprinting persisted long after the initial inflammation had subsided and ultimately exacerbated choroidal neovascularization in a model of nvAMD. Single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) identified activating transcription factor 3 (ATF3) as a central mediator of retina-resident MNP reprogramming following peripheral inflammation. ATF3 polarized MNPs toward a reparative phenotype biased toward production of proangiogenic factors in response to subsequent injury. Therefore, a past history of bacterial endotoxin-induced inflammation can lead to immunological reprograming within CNS-resident MNPs and aggravate pathological angiogenesis in the aging retina.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Humans , Microglia/pathology , Retina/pathology , Choroidal Neovascularization/genetics , Macular Degeneration/genetics , Macular Degeneration/pathology , Inflammation/pathology
4.
Science ; 379(6627): 45-62, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36603072

ABSTRACT

Age-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities. Stearic acid, acting through Toll-like receptor 4 (TLR4), is sufficient to remodel chromatin landscapes and selectively enhance accessibility at binding sites for activator protein-1 (AP-1). Myeloid cells show less oxidative phosphorylation and shift to glycolysis, ultimately leading to proinflammatory cytokine transcription, aggravation of pathological retinal angiogenesis, and neuronal degeneration associated with loss of visual function. Thus, a past history of obesity reprograms mononuclear phagocytes and predisposes to neuroinflammation.


Subject(s)
Epigenetic Memory , Immunity, Innate , Macular Degeneration , Neuroinflammatory Diseases , Obesity , Animals , Mice , Cytokines/genetics , Immunity, Innate/genetics , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , Obesity/genetics , Phagocytes/immunology , Transcription, Genetic , Macular Degeneration/genetics , Macular Degeneration/immunology , Cellular Reprogramming/genetics , Toll-Like Receptor 4/genetics
5.
Proc Natl Acad Sci U S A ; 120(1): e2209973120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574648

ABSTRACT

Obesity is a major risk factor for cancer. Conventional thought suggests that elevated adiposity predisposes to heightened inflammatory stress and potentiates tumor growth, yet underlying mechanisms remain ill-defined. Here, we show that tumors from patients with a body mass index >35 carry a high burden of senescent cells. In mouse syngeneic tumor models, we correlated a pronounced accretion of senescent cancer cells with poorly immunogenic tumors when mice were subjected to diet-induced obesity (DIO). Highly immunogenic tumors showed lesser senescence burden suggesting immune-mediated elimination of senescent cancer cells, likely targeted as a consequence of their senescence-associated secretory phenotype. Treatment with the senolytic BH3 mimetic small molecule inhibitor ABT-263 selectively stalled tumor growth in mice with DIO to rates comparable to regular diet-fed mice. Thus, consideration of body adiposity in the selection of cancer therapy may be a critical determinant for disease outcome in poorly immunogenic malignancies.


Subject(s)
Cellular Senescence , Neoplasms , Mice , Animals , Obesity/complications
6.
Sci Rep ; 11(1): 15767, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344941

ABSTRACT

The beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.


Subject(s)
Adipose Tissue, Brown/physiology , Homeostasis , Myeloid Cells/metabolism , Neuropilin-1/physiology , Obesity/prevention & control , Thermogenesis , Animals , Diet/adverse effects , Energy Metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Obesity/pathology
7.
Science ; 369(6506)2020 08 21.
Article in English | MEDLINE | ID: mdl-32820093

ABSTRACT

In developed countries, the leading causes of blindness such as diabetic retinopathy are characterized by disorganized vasculature that can become fibrotic. Although many such pathological vessels often naturally regress and spare sight-threatening complications, the underlying mechanisms remain unknown. Here, we used orthogonal approaches in human patients with proliferative diabetic retinopathy and a mouse model of ischemic retinopathies to identify an unconventional role for neutrophils in vascular remodeling during late-stage sterile inflammation. Senescent vasculature released a secretome that attracted neutrophils and triggered the production of neutrophil extracellular traps (NETs). NETs ultimately cleared diseased endothelial cells and remodeled unhealthy vessels. Genetic or pharmacological inhibition of NETosis prevented the regression of senescent vessels and prolonged disease. Thus, clearance of senescent retinal blood vessels leads to reparative vascular remodeling.


Subject(s)
Aging/pathology , Diabetic Retinopathy/pathology , Extracellular Traps/immunology , Retinal Vessels/pathology , Animals , Cellular Senescence , Diabetic Retinopathy/immunology , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Retinal Vessels/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...