Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Comp Neurol ; 529(13): 3336-3358, 2021 09.
Article in English | MEDLINE | ID: mdl-34041754

ABSTRACT

Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.


Subject(s)
FMRFamide/genetics , Neuropeptides/genetics , Schistosomiasis mansoni/genetics , Transcriptome/genetics , Amino Acid Sequence , Animals , Biomphalaria , FMRFamide/analysis , FMRFamide/metabolism , Neuropeptides/analysis , Neuropeptides/metabolism , Optical Imaging/methods , Schistosoma mansoni/genetics , Schistosoma mansoni/isolation & purification , Schistosomiasis mansoni/metabolism
2.
Mol Neurobiol ; 56(2): 797-811, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29797183

ABSTRACT

While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A1-dopamine D1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D1 receptor-mediated signaling. A1-D1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.


Subject(s)
Caffeine/pharmacology , Motor Neurons/drug effects , Receptors, Dopamine D1/drug effects , Spinal Cord/drug effects , Adenosine/pharmacology , Cells, Cultured , Dopamine/pharmacology , Humans , Neurons, Efferent/drug effects , Synaptic Transmission/drug effects
3.
J Caffeine Res ; 6(4): 154-162, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-28078169

ABSTRACT

Background: The purpose of this study was to determine energy drink (ED) consumption patterns among Hispanic college students. We measured the prevalence and frequency of ED consumption according to gender, degree programs, and specific university-related and social situations. In addition, we assessed the frequency of consumption of EDs mixed with alcoholic beverages. Methods: A total of 508 college students from the University of Puerto Rico, the largest Hispanic institution of higher education statewide, completed an online questionnaire. Results: Twenty-one percent of participants reported consuming EDs with the majority consuming EDs either occasionally (every 2-3 months) or at least once or twice a month. Men were found to be more likely to consume EDs than women. Undergraduate students were found less likely to consume EDs than graduate students. Most students consumed EDs while studying and during social activities. More than one-third of participants that consume EDs admitted mixing them with an alcoholic beverage. Graduate students were found to consume EDs mixed with alcohol more often. Conclusions: The majority of students consumed EDs occasionally and while studying. Most side effects reported after consuming EDs were similar to previous findings. The higher consumption of EDs and of EDs mixed with alcohol by students in graduate programs could be explained by a higher and more complex study load requiring longer periods of wakefulness and concentration. Future studies looking at the consumption patterns of EDs in more competitive graduate programs such as medical and/or dentistry school should be considered.

4.
Life Sci ; 101(1-2): 1-9, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24530739

ABSTRACT

Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases.


Subject(s)
Caffeine/therapeutic use , Neurodegenerative Diseases/drug therapy , Purinergic P1 Receptor Agonists/therapeutic use , Purinergic P1 Receptor Antagonists/therapeutic use , Animals , Humans , Models, Biological , Neuroprotective Agents/therapeutic use
5.
Article in English | MEDLINE | ID: mdl-24043359

ABSTRACT

Motor patterns driving rhythmic movements of our lower limbs during walking are generated by groups of neurons within the spinal cord, called central pattern generators (CPGs). After suffering a spinal cord injury (SCI), many descending fibers from our brain are severed or become nonfunctional, leaving the spinal CPG network without its initiating drive. Recent studies have focused on the importance of maintaining sensory stimulation to the limbs of SCI patients as a way to initiate and control the CPG locomotor network. We began assessing the role of sensory feedback to the locomotor CPG network using a neonatal mouse spinal cord preparation where the hindlimbs are still attached. Removing sensory feedback coming from the hindlimbs by way of a lower lumbar transection or by ventral root denervation revealed a positive correlation in the ability of sensory input deprivation to disrupt ongoing locomotor activity on older versus younger animals. The differences in the motor responses as a function of age could be correlated with the loss of excitatory activity from sensory afferents. Continued studies on this field could eventually provide key information that translates into the design of novel therapeutic strategies to treat patients who have suffered a SCI.


Subject(s)
Afferent Pathways/physiopathology , Locomotion/physiology , Spinal Cord/physiopathology , Action Potentials , Animals , Animals, Newborn , Axotomy , Cordotomy , Dopamine/pharmacology , Efferent Pathways/physiopathology , Feedback, Sensory , Hindlimb/innervation , In Vitro Techniques , Interneurons/physiology , Locomotion/drug effects , Mice , Mice, Inbred ICR , N-Methylaspartate/pharmacology , Reaction Time , Serotonin/pharmacology , Spinal Cord/drug effects , Spinal Cord Injuries/physiopathology , Spinal Nerve Roots/physiopathology
6.
Article in English | MEDLINE | ID: mdl-12664099

ABSTRACT

Backfills of the cerebral-buccal connective (CBC) of Aplysia californica revealed a cluster of five to seven pedal-buccal projection neurons in the anterolateral quadrant of the ventral surface of each pedal ganglion. Intra- and extracellular recordings showed that the pedal-buccal projection neurons shared common electrophysiological properties and synaptic inputs. However, they exhibited considerable heterogeneity with respect to their projection patterns. All pedal-buccal projection neurons that were tested received a slow excitatory postsynaptic potential from the ipsi- and contralateral cerebral-pedal regulator (C-PR) neuron, a cell that is thought to play a key role in the generation of a food-induced arousal state. Tests were conducted to identify potential synaptic follower neurons of the pedal-buccal projection neurons in the cerebral and buccal ganglia, but none were detected. Finally, nerve recordings revealed projections from the pedal-buccal projection neurons in the nerves associated with the buccal ganglion. In tests designed to determine the functional properties of these peripheral projections, no evidence was obtained supporting a mechanosensory or proprioceptive role and no movements were observed when they were fired. It is proposed that peripheral elements utilized in consummatory phases of Aplysia feeding may be directly influenced by a neuronal pathway that is activated during the food-induced arousal state.


Subject(s)
Aplysia/physiology , Appetite/physiology , Biotin/analogs & derivatives , Cheek/innervation , Extremities/innervation , Feeding Behavior/physiology , Neurons/physiology , Animals , Electrophysiology , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/drug effects , Ganglia, Invertebrate/physiology , Interneurons/physiology , Neural Pathways/physiology , Patch-Clamp Techniques , Peripheral Nerves/chemistry , Peripheral Nerves/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL