Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175663

ABSTRACT

BACKGROUND: Gastric cancer has been recognized as the second most probable cause of death in humans from cancer diseases around the world. Postbiotics, supernatant, and metabolites from probiotic microorganisms have recently been used widely to prevent and treat cancer diseases in humans, without any undesirable side effects. This study explores the antiproliferative and antitumor activities of the probiotic Saccharomyces cerevisiae var. boulardii supernatant (SBS) against AGS cancer cells, a human gastric adenocarcinoma cell line. METHODS: We evaluated cell growth inhibitory and mechanical properties of the cytoplasmic membrane and the downregulation of survivin and proinflammatory genes in AGS cells treated with SBS after 24 and 48 h. RESULTS: SBS significantly inhibits the AGS cell growth, and the concentrations with IC50 values after 24 and 48 h treatments are measured as 2266 and 1956 µg/mL, respectively. Regarding the AFM images and Young`s modulus analysis, SBS significantly induces morphological changes in the cytoplasmic membrane of the treated AGS cells. Expression of survivin, NFƙB, and IL-8 genes is significantly suppressed in AGS cells treated with SBS. CONCLUSIONS: Considering the antitumor activities of SBS on AGS cell line, it can be regarded as a prospective therapeutic and preventive strategy against human stomach cancer disease.


Subject(s)
Probiotics , Saccharomyces boulardii , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Saccharomyces cerevisiae , Survivin/genetics , Probiotics/pharmacology , Probiotics/metabolism , Gene Expression , Cell Membrane/metabolism , Cell Line, Tumor
2.
Medicina (Kaunas) ; 59(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36837502

ABSTRACT

Background and Objectives: Bromelain and ficin are aqueous extracts from fruits of Ananas comosus and Ficus carcia plants, used widely for medical applications. Angiotensin-converting enzyme 2 (ACE2) is a homolog of ACE, degrading Ang II to angiotensin 1-7 and decreasing the cellular concentration of Ang II. Materials and Methods: In this study, we investigated the ACE2-inhibitory, antiproliferative, and apoptosis-inducing effects of ficin and bromelain on caco-2 cells. Results: We found that bromelain and ficin significantly reduced the viability of human colon cancer cells with IC50 value concentrations of 8.8 and 4.2 mg/mL for bromelain after 24 and 48 h treatments, and 8.8 and 4.2 mg/mL for ficin after 24 and 48 h treatments, respectively. The apoptosis of the caco-2 cell line treated with bromelain was 81.04% and 56.70%, observed after 24 and 48 h. Total apoptotic proportions in caco-2 cells treated with ficin after 24 and 48 h were 83.7% and 73.0%. An amount of 1.6 mg/mL of bromelain and ficin treatments on caco-2 cells after 24 h revealed a higher decrease than that of other concentrations in the expression of ACE2 protein. Conclusions: In conclusion, bromelain and ficin can dose-dependently decrease the expression of ACE2 protein in caco-2 cells.


Subject(s)
Angiotensin-Converting Enzyme 2 , Colonic Neoplasms , Humans , Bromelains/pharmacology , Ficain , Caco-2 Cells
3.
Article in English | MEDLINE | ID: mdl-36547769

ABSTRACT

Saccharomyces cerevisiae var. boulardii has been used as a probiotic yeast in the medical and food industries. Colon cancers have been known as the third most common cancer type worldwide. Nowadays, cell-free extract and metabolites of probiotics have been employed for the treatment or prevention of different cancer diseases. This study investigates the anticancer properties of S. boulardii metabolites against human colon carcinoma. We evaluated cytotoxicity, apoptosis induction, and suppression of survivin, IL-8, and NFƙB gene expression effects of SBM against caco-2 cells after 24 and 48 h. IC50 concentrations of SBM were measured at 815 and 1411 µg/mL for 24 and 48 h treatments, respectively. The total proportion of apoptotic caco-2 cells treated with SBM after 24 and 48 h were calculated at 62.23 and 88.7%, respectively. Also, relative expression of survivin, IL-8, and NFƙB genes were significantly suppressed in caco-2 cells treated with SBM after 24 and 48 h. In conclusion, we found that SBM induced apoptosis, inhibited the growth rate, and suppressed the expression of the survivin, IL-8, and NFƙB genes in human colorectal cancer cells and it can be considered as a perspective supplement or drug for the treatment or prevention of colon cancer in humans.

4.
FEMS Microbiol Lett ; 369(1)2022 11 25.
Article in English | MEDLINE | ID: mdl-36352488

ABSTRACT

Foodborne and zoonotic viral pathogens are responsible for substantial morbidity and mortality worldwide. These viruses can be transmitted through foods such as dairy products to humans and cause several acute and chronic diseases. This study aimed to investigate the prevalence and profile of different foodborne and zoonotic viruses in raw cow milk samples. We collected 492 raw cow milk samples from local dairy markets in Qazvin, Iran. Then we evaluated the presence of hepatitis A virus, noroviruses, rotavirus, astrovirus, bovine leukaemia virus (BLV) and tick-borne encephalitis virus (TBEV) in samples using conventional and nested reverse transcription-polymerase chain reaction methods. We found that 34.95, 7.72, 25.81, 14.63, 66.86, 12.80 and 21.34% of raw milk samples were contaminated with norovirus GI, norovirus GII, hepatitis A virus, rotavirus, astrovirus, BLV and TBEV viruses, respectively. Interestingly, the samples collected from the city's south area revealed a higher prevalence of foodborne and zoonotic viruses. Astrovirus and its combination with norovirus GI were the most prevalent virus profiles. Also, the highest correlations were observed among the presence of rotavirus and hepatitis A viruses (0.36) and TBEV and norovirus GII (0.31). Considering the prevalence rate and virus profiles of different foodborne and zoonotic viruses in raw milk samples, hygiene practices and the pasteurization process are strongly suggested to be conducted throughout the cow milk production chain and in dairy industries to prevent infections with these pathogens.


Subject(s)
Norovirus , Rotavirus , Viruses , Humans , Animals , Female , Cattle , Milk/chemistry , Prevalence , RNA, Viral , Norovirus/genetics , Rotavirus/genetics , Viruses/genetics
5.
Probiotics Antimicrob Proteins ; 14(6): 1130-1138, 2022 12.
Article in English | MEDLINE | ID: mdl-35094296

ABSTRACT

Saccharomyces boulardii, a variety of S. cerevisiae, is used as a probiotic yeast in food and drug industries. However, S. boulardii is an opportunistic pathogen, and the supernatant of this organism has recently been recommended for its health-promoting benefits. Breast cancer is the most frequent cancer disease in women worldwide. The objective of this study was to investigate the effects of S. boulardii supernatant (SBS) on cell viability, inducing apoptosis and suppression of survivin gene expression in MCF-7 and MCF-7/MX as human non-drug-resistant and multidrug-resistant breast cancer cells respectively. The IC50 value of SBS against MCF-7 was calculated 1037, 542, and 543 µg/mL for 24, 48, and 72 h treatments, respectively. Also, this value against MCF-7/MX cells were measured 1242, 616, and 444 µg/mL after 24, 48, and 72 h respectively. We found that suppression of survivin gene expression should be one of the main molecular antitumor mechanisms which is contributed to apoptosis in breast cancer cells. However, anticancer activity of SBS was observed more efficient against MCF-7 than that against MCF-7/MX cells. SBS is suggested to be considered as one of the prospective anticancer drugs to treat human breast carcinoma. More investigations especially in vivo studies are strongly recommended to be implemented to characterize other antitumor mechanisms of SBS against breast carcinoma.


Subject(s)
Breast Neoplasms , Probiotics , Saccharomyces boulardii , Humans , Female , Saccharomyces boulardii/genetics , Saccharomyces cerevisiae/metabolism , Survivin/metabolism , Breast Neoplasms/drug therapy , Prospective Studies , Probiotics/pharmacology , Probiotics/metabolism
6.
Article in English | MEDLINE | ID: mdl-31814840

ABSTRACT

The capability of flavonoids in sensitizing cancer cells was demonstrated in numerous works to chemotherapy and converse multidrug resistance by modulating efflux pumps and apoptosis mechanisms. Three flavonoids, namely, bavachinin, tephrosin, and candidone, have been recently introduced to cancer treatment research presenting various activities, such as antibacterial, immunomodulatory, cell death, and anticancer. Less information exists regarding the therapeutic significance of these flavonoids in cancer treatment, especially in overcoming multidrug resistance (MDR). Here, we tempted to investigate the potency of these agents in reversing MDR by analyzing their effects as chemosensitizers on cell cytotoxicity, P-gp and ABCG2 protein expression levels, and their function on two multidrug-resistant cell lines, P-gp-overexpressing human gastric adenocarcinoma cell line (EPG85.257RDB) and ABCG2-overexpressing human epithelial breast cancer cell line (MCF7/MX). The inhibitory concentration of 10% (IC10) of bavachinin, tephrosin, and candidone in EPG85.257RDB cells was 1588.7 ± 202.2, 264.8 ± 86.15, and 1338.6 ± 114.11 nM, respectively. Moreover, these values in MCF7/MX cell were 2406.4 ± 257.63, 38.8 ± 4.28, and 27.9 ± 5.59 nM, respectively. Expression levels of ABCG2 and P-gp were not significantly downregulated by these flavonoids. Maximum levels of daunorubicin and mitoxantrone accumulations and minimum rates of drug efflux in both cell lines were detected 48 hrs posttreatment with tephrosin and bavachinin, respectively. Chemosensitization to mitoxantrone and daunorubicin treatments was, respectively, achieved in MCF7/MX and EPG85.257RDB cells in response to IC10 of bavachinin and tephrosin, independently. These effects did not follow time-dependent manner, and each flavonoid had its cell-dependent patterns. Overall, bavachinin, tephrosin, and candidone showed potency to sensitize MDR cells to daunorubicin and mitoxantrone and could be considered as attractive MDR modulators for cancer treatment. However, their action was time and cell specific.

7.
J Immunotoxicol ; 13(2): 235-42, 2016.
Article in English | MEDLINE | ID: mdl-25990599

ABSTRACT

In the body, there is a natural three-dimensional (3D) microenvironment in which immune cells, including dendritic cells (DC), play their functions. This study evaluated the impact of using collagen-chitosan 3D nano-scaffolds in comparisons to routine 2D culture plates on DC phenotype and functions. Bone marrow-derived DC were cultured on scaffolds and plates and then stimulated with lipopolysaccharide (LPS) or chitosan-based nanoparticles (NP) for 24 h. Thereafter, DC viability, expression of maturation markers and levels of cytokines secretion were evaluated. In another set of studies, the DC were co-cultured with allogenic T-lymphocytes in both the 2D and 3D systems and effects on DC-induction of T-lymphocyte proliferation and cytokine release were analyzed. The results indicated that CD40, CD86 and MHC II marker expression and interleukin (IL)-12, IL-6 and tumor necrosis factor (TNF)-α secretion by DC were enhanced in 3D cultures in comparison to by cells maintained in the 2D states. The data also showed that DNA/chitosan NP activated DC more than LPS in the 3D system. T-Lymphocyte proliferation was induced to a greater extent by DNA/NP-treated DC when both cell types were maintained on the scaffolds. Interestingly, while DC induction of T-lymphocyte interferon (IFN)-γ and IL-4 release was enhanced in the 3D system (relative to controls), there was a suppression of transforming growth factor (TGF)-ß production; effects on IL-10 secretion were variable. The results here suggested that collagen-chitosan scaffolds could provide a pro-inflammatory and activator environment to perform studies to analyze effects of exogenous agents on the induction of DC maturation, NP uptake and/or cytokines release, as well as for the ability of these cells to potentially interact with other immune system cells in vitro.


Subject(s)
Cell Culture Techniques/methods , Chitosan/chemistry , Collagen/chemistry , Dendritic Cells/immunology , T-Lymphocytes/immunology , Tissue Scaffolds/chemistry , Animals , Cell Proliferation , Dendritic Cells/cytology , Female , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , T-Lymphocytes/cytology
8.
Future Sci OA ; 1(4): FSO49, 2015 Nov.
Article in English | MEDLINE | ID: mdl-28031908

ABSTRACT

AIM: Food and medicinal applications of barberry date back to 2500 years ago. This study investigates Berberis integerrima impact on lymphocytic immune responses. MATERIALS & METHODS: Balb/c splenocytes were treated by 0.001-1000 µg/ml of B. integerrimaaqueous and alcoholic extracts in presence of phytohemagglutinin and lipopolysaccharide mitogens. Cell proliferation was assayed and cytokines were measured using ELISA. RESULTS: Both extracts suppressed proliferation of phytohemagglutinin stimulated splenocytes (as T cells), while alcoholic extract induced expansion of lipopolysaccharide activated cells (as B lymphocytes) and unstimulated cells (p < 0.05). Both barberry extracts suppressed IFN-γ production (p < 0.05) and enhanced IL-4, IL-10 and TGF-ß release from splenocytes (p < 0.05). CONCLUSION: Both extracts could suppress T-cell and enhance B-cell proliferation and shift immune responses toward Th2.

9.
J Immunotoxicol ; 12(2): 124-31, 2015.
Article in English | MEDLINE | ID: mdl-24873744

ABSTRACT

The present work sought to investigate potential suppressive effects on mouse macrophages by in vitro treatment with clove (Syzygium aromaticum) ethanolic extracted essential oil (containing eugenol) or its water-soluble extract. Using doses (ranging from 0.001-1000 µg/ml) of each material freshly prepared in the laboratory, cell survival and production of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12 by the treated cells (that in all cases also had received LPS stimulation) were measured. Results indicated that, except at doses ≥100 µg/ml, viability was unaffected in all groups. NO release by LPS-stimulated macrophages was generally significantly suppressed by either material; in contrast, low (i.e. 0.001-1 µg/ml) doses of either extract class appeared to enhance NO release by non-LPS (unstimulated)-treated macrophages. Among LPS-stimulated cells, TNFα release was also significantly affected by each extract; the ethanolic extract was suppressive at all doses tested, while the aqueous material was so up to 1 µg/ml and then became stimulatory. In contrast, nearly every dose of either extract appeared to stimulate IL-6 release from the LPS-treated cells. Effects on IL-12 production were overall inconsistent; in general, the ethanolic extract tended to be stimulatory of production by the LPS-treated cells. The data for the aqueous material showed no discernable pattern of effect. The results suggest that clove extracts do not have a distinct cytotoxic activity, but do impart potential anti- and pro-oxidant effects in cells, depending on their concentrations and on the activation state of the macrophages themselves at the time of exposure to the extracts. The impact of the extracts on macrophage cytokine release also displays a pattern of dose-relatedness.


Subject(s)
Clove Oil/pharmacology , Eugenol/pharmacology , Macrophages/drug effects , Plant Extracts/pharmacology , Syzygium/immunology , Animals , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Ethanol/chemistry , Female , Immunomodulation , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Oxidation-Reduction/drug effects , Plant Extracts/chemistry , Water/chemistry
10.
J Food Drug Anal ; 22(4): 448-454, 2014 Dec.
Article in English | MEDLINE | ID: mdl-28911459

ABSTRACT

Clove (Syzygium aromaticum) has been used in folk medicine in many disorders. The present work aimed to investigate effects of clove essential oil as eugenol and water soluble ingredients on mouse splenocytes. Clove extracts were harvested and in different concentrations (0.001-1000 µg/mL) were affected to splenocytes and also phytohemagglutinin (PHA = 5 µg/mL) and lipopolysaccharide (LPS = 10 µg/mL) activated splenocytes; then splenocytes proliferation assayed using the MTT ([3-(4, 5-dimethylthiazole-2-yl) -2, 5-diphenyl tetrazolium bromide]) method were done. On the culture supernatant interferon (IFN)-γ, interleukin (IL)-4, IL-10, and transforming growth factor (TGF)-ß cytokines were measured. Clove ingredients (100 µg/mL and 1000 µg/mL) reduced PHA stimulated splenocytes proliferation and enhanced LPS stimulated cells expansion. Treated splenocytes showed suppression of IFN-γ release and induction of IL-4, IL-10, and TGF-ß secretion (in the range of 0.1-1000 µg/mL). The results of this study suggest clove extracts could suppress the T cell cellular immunity and enhance humoral immune responses. In clove affection cytokine pattern shifted toward modulatory and Th2 responses and accelerator of humoral immunity cytokines.

SELECTION OF CITATIONS
SEARCH DETAIL
...