Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(45): 455501, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32796154

ABSTRACT

We study the effects of hydrodynamic forces in frequency-modulation AFM experiments (FM-AFM) in liquid. We first establish the theoretical equations needed to derive the interaction stiffness k int and the damping ß int due to the hydrodynamic forces from the frequency shift and the excitation amplitude. We develop specific FM-AFM experiments to measure the variation of k int and ß int over a large range of distance in water up to 200 µm. Comparison between theory and experiments point out that the evolution of k int at short and long distance arises from unsteady hydrodynamic forces on the cantilever. On the other hand, ß int is small at long distance and diverges at short probe-surface distance, as predicted by the classical Reynolds sphere model.

2.
ACS Appl Mater Interfaces ; 12(30): 34137-34147, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32634302

ABSTRACT

Organic clathrates formed by hydroquinone (HQ) and gases such as CO2 and CH4 are solid supramolecular host-guest compounds in which the gaseous guest molecules are encaged in a host framework of HQ molecules. Not only are these inclusion compounds fascinating scientific curiosities but they can also be used in practical applications such as gas separation. However, the development and future use of clathrate-based processes will largely depend on the effectiveness of the reactive materials used. These materials should enable fast and selective enclathration and have a large gas storage capacity. This article discusses the properties and performance of a new composite material able to form gas clathrates with hydroquinone (HQ) deposited on alumina particles. Apart from the general characterization of the HQ-alumina composite, one of the most remarkable observations is the unexpected formation of a guest-free clathrate structure with long-term stability (>2 years) inside the composite. Interestingly enough, in addition to a slight improvement in the enclathration kinetics of pure CO2 compared to powdered HQ, preferential capture of CO2 molecules is observed when the HQ-alumina composite is exposed to an equimolar CO2/CH4 gas mixture. In terms of gas capture selectivity toward CO2, the performance of this new composite exceeds that of pure HQ and HQ-silica composites developed in a previous study, opening up new opportunities for the design and use of these novel materials for gas separation.

3.
J Phys Chem A ; 121(29): 5450-5458, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28675931

ABSTRACT

Hydroquinone (HQ) is known to form organic clathrates with different gaseous species over a wide range of pressures and temperatures. However, the enclathration reaction involving HQ is not fully understood. This work offers new elements of understanding HQ clathrate formation and dissociation mechanisms. The kinetics and selectivity of the enclathration reaction were also investigated. The focus was placed on HQ clathrates formed with CO2 and CH4 as guest molecules for potential use in practical applications for the separation of a CO2/CH4 gas mixture. The structural transition from the native form (α-HQ) to the clathrate form (ß-HQ), as well as the reverse process, were tracked using in situ Raman spectroscopy. The clathrate formation was conducted at 323 K and 3.0 MPa, and the dissociation was conducted at 343 K and 1.0 kPa. The experiments with CH4 confirmed that a small amount of gas can fill the α-HQ before the phase transition from α- to ß-HQ begins. The dissociation of the CO2-HQ clathrates highlighted the presence of a clathrate structure with no guest molecules. We can therefore conclude that HQ clathrate formation and dissociation are two-step reactions that pass through two distinct reaction intermediates: guest-loaded α-HQ and guest-free ß-HQ. When an equimolar CO2/CH4 gas mixture is put in contact with either the α-HQ or the guest-free ß-HQ, the CO2 is preferentially captured. Moreover, the guest-free ß-HQ can retain the CO2 quicker and more selectively.

4.
J Colloid Interface Sci ; 297(2): 785-91, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16324706

ABSTRACT

The dilatational viscoelasticity behaviors of water/oil interfaces formed with a crude oil and its distilled fractions diluted in cyclohexane were investigated by means of an oscillating drop tensiometer. The rheological study of the w/o interfaces at different frequencies has shown that the stable w/o emulsions systematically correspond to interfaces which present the rheological characteristics of a 2D gel near its gelation point. The stability of emulsions was found to increase with both the gel strength and the glass transition temperature of the gel. As expected, the indigenous natural surfactants responsible for the formation of the interfacial critical gel have been identified as the heaviest amphiphilic components present in the crude oil; i.e., asphaltenes and resins. Nevertheless, we have shown that such a gel can also form in the absence of asphaltene in the oil phase.

5.
J Phys Chem B ; 109(36): 17205-11, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16853195

ABSTRACT

A method for modeling the heating curve for gas hydrate dissociation in porous media at isochoric conditions (constant cell volume) is presented. This method consists of using an equation of state of the gas, the cumulative volume distribution (CVD) of the porous medium, and a van der Waals-Platteeuw-type thermodynamic model that includes a capillary term. The proposed method was tested to predict the heating curves for methane hydrate dissociation in a mesoporous silica glass for saturated conditions (liquid volume = pore volume) and for a fractional conversion of water to hydrate of 1 (100% of the available water was converted to hydrate). The shape factor (F) of the hydrate-water interface was found equal to 1, supporting a cylindrical shape for the hydrate particles during hydrate dissociation. Using F = 1, it has been possible to predict the heating curve for different ranges of pressure and temperature. The excellent agreement between the calculated and experimental heating curves supports the validity of our approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...