Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Neurosci ; 38(47): 10102-10113, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30282728

ABSTRACT

In the adult brain, the extracellular matrix (ECM) influences recovery after injury, susceptibility to mental disorders, and is in general a strong regulator of neuronal plasticity. The proteoglycan aggrecan is a core component of the condensed ECM structures termed perineuronal nets (PNNs), and the specific role of PNNs on neural plasticity remains elusive. Here, we genetically targeted the Acan gene encoding for aggrecan using a novel animal model. This allowed for conditional and targeted loss of aggrecan in vivo, which ablated the PNN structure and caused a shift in the population of parvalbumin-expressing inhibitory interneurons toward a high plasticity state. Selective deletion of the Acan gene in the visual cortex of male adult mice reinstated juvenile ocular dominance plasticity, which was mechanistically identical to critical period plasticity. Brain-wide targeting improved object recognition memory.SIGNIFICANCE STATEMENT The study provides the first direct evidence of aggrecan as the main functional constituent and orchestrator of perineuronal nets (PNNs), and that loss of PNNs by aggrecan removal induces a permanent state of critical period-like plasticity. Loss of aggrecan ablates the PNN structure, resulting in invoked juvenile plasticity in the visual cortex and enhanced object recognition memory.


Subject(s)
Aggrecans/deficiency , Extracellular Matrix/metabolism , Nerve Net/metabolism , Neuronal Plasticity/physiology , Visual Cortex/metabolism , Aggrecans/analysis , Aggrecans/genetics , Animals , Cell Line , Extracellular Matrix/chemistry , Extracellular Matrix/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Net/chemistry , Photic Stimulation/methods , Visual Cortex/chemistry
2.
J Neurosci ; 37(5): 1269-1283, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28039374

ABSTRACT

Perineuronal nets (PNNs) are extracellular matrix structures mainly enwrapping parvalbumin-expressing inhibitory neurons. The assembly of PNNs coincides with the end of the period of heightened visual cortex plasticity in juveniles, whereas removal of PNNs in adults reopens for plasticity. The mechanisms underlying this phenomenon remain elusive. We have used chronic electrophysiological recordings to investigate accompanying electrophysiological changes to activity-dependent plasticity and we report on novel mechanisms involved in both induced and critical period plasticity. By inducing activity-dependent plasticity in the visual cortex of adult rats while recording single unit and population activity, we demonstrate that PNN removal alters the balance between inhibitory and excitatory spiking activity directly. Without PNNs, inhibitory activity was reduced, whereas spiking variability was increased as predicted in a simulation with a Brunel neural network. Together with a shift in ocular dominance and large effects on unit activity during the first 48 h of monocular deprivation (MD), we show that PNN removal resets the neural network to an immature, juvenile state. Furthermore, in PNN-depleted adults as well as in juveniles, MD caused an immediate potentiation of gamma activity, suggesting a novel mechanism initiating activity-dependent plasticity and driving the rapid changes in unit activity. SIGNIFICANCE STATEMENT: Emerging evidence suggests a role for perineuronal nets (PNNs) in learning and regulation of plasticity, but the underlying mechanisms remain unresolved. Here, we used chronic in vivo extracellular recordings to investigate how removal of PNNs opens for plasticity and how activity-dependent plasticity affects neural activity over time. PNN removal caused reduced inhibitory activity and reset the network to a juvenile state. Experimentally induced activity-dependent plasticity by monocular deprivation caused rapid changes in single unit activity and a remarkable potentiation of gamma oscillations. Our results demonstrate how PNNs may be involved directly in stabilizing the neural network. Moreover, the immediate potentiation of gamma activity after plasticity onset points to potential new mechanisms for the initiation of activity-dependent plasticity.


Subject(s)
Extracellular Matrix/physiology , Gamma Rhythm/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Aging/physiology , Animals , Electrodes, Implanted , Electroencephalography , Electrophysiological Phenomena/physiology , Male , Photic Stimulation , Rats , Rats, Long-Evans , Synapses/physiology , Vision, Monocular , Visual Cortex/growth & development , Visual Cortex/physiology
3.
Glycobiology ; 25(1): 30-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25138304

ABSTRACT

Proteoglycan (PG) sulfation depends on activated nucleotide sulfate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Transporters in the Golgi membrane translocate PAPS from the cytoplasm into the organelle lumen where PG sulfation occurs. Silencing of PAPS transporter (PAPST) 1 in epithelial MDCK cells reduced PAPS uptake into Golgi vesicles. Surprisingly, at the same time sulfation of heparan sulfate (HS) was stimulated. The effect was pathway specific in polarized epithelial cells. Basolaterally secreted proteoglycans (PGs) displayed an altered HS sulfation pattern and increased growth factor binding capacity. In contrast, the sulfation pattern of apically secreted PGs was unchanged while the secretion was reduced. Regulation of PAPST1 allows epithelial cells to prioritize between PG sulfation in the apical and basolateral secretory routes at the level of the Golgi apparatus. This provides sulfation patterns that ensure PG functions at the extracellular level, such as growth factor binding.


Subject(s)
Chondroitin Sulfates/metabolism , Golgi Apparatus/metabolism , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Membrane Transport Proteins/metabolism , Phosphoadenosine Phosphosulfate/metabolism , Animals , Biological Transport , Cell Polarity , Chondroitin Sulfates/chemistry , Dogs , Gene Expression Regulation , Heparan Sulfate Proteoglycans/chemistry , Heparitin Sulfate/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Madin Darby Canine Kidney Cells , Membrane Transport Proteins/genetics , Phosphoadenosine Phosphosulfate/chemistry , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
4.
J Biol Chem ; 288(38): 27384-27395, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23940048

ABSTRACT

Chondroitin sulfate (CS) and the CS-rich extracellular matrix structures called perineuronal nets (PNNs) restrict plasticity and regeneration in the CNS. Plasticity is enhanced by chondroitinase ABC treatment that removes CS from its core protein in the chondroitin sulfate proteoglycans or by preventing the formation of PNNs, suggesting that chondroitin sulfate proteoglycans in the PNNs control plasticity. Recently, we have shown that semaphorin3A (Sema3A), a repulsive axon guidance molecule, localizes to the PNNs and is removed by chondroitinase ABC treatment (Vo, T., Carulli, D., Ehlert, E. M., Kwok, J. C., Dick, G., Mecollari, V., Moloney, E. B., Neufeld, G., de Winter, F., Fawcett, J. W., and Verhaagen, J. (2013) Mol. Cell. Neurosci. 56C, 186-200). Sema3A is therefore a candidate for a PNN effector in controlling plasticity. Here, we characterize the interaction of Sema3A with CS of the PNNs. Recombinant Sema3A interacts with CS type E (CS-E), and this interaction is involved in the binding of Sema3A to rat brain-derived PNN glycosaminoglycans, as demonstrated by the use of CS-E blocking antibody GD3G7. In addition, we investigate the release of endogenous Sema3A from rat brain by biochemical and enzymatic extractions. Our results confirm the interaction of Sema3A with CS-E containing glycosaminoglycans in the dense extracellular matrix of rat brain. We also demonstrate that the combination of Sema3A and PNN GAGs is a potent inhibitor of axon growth, and this inhibition is reduced by the CS-E blocking antibody. In conclusion, Sema3A binding to CS-E in the PNNs may be a mechanism whereby PNNs restrict growth and plasticity and may represent a possible point of intervention to facilitate neuronal plasticity.


Subject(s)
Axons/metabolism , Brain/metabolism , Chondroitin Sulfates/metabolism , Extracellular Matrix/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Semaphorin-3A/metabolism , Amino Acid Motifs , Animals , Brain Chemistry/physiology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/genetics , Extracellular Matrix/chemistry , Extracellular Matrix/genetics , HEK293 Cells , Humans , Mice , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Binding , Rats , Semaphorin-3A/chemistry , Semaphorin-3A/genetics
5.
Mol Cell Neurosci ; 56: 186-200, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23665579

ABSTRACT

In the adult rodent brain, subsets of neurons are surrounded by densely organised extracellular matrix called perineuronal nets (PNNs). PNNs consist of hyaluronan, tenascin-R, chondroitin sulphate proteoglycans (CSPGs), and the link proteins Crtl1 and Bral2. PNNs restrict plasticity at the end of critical periods and can be visualised with Wisteria floribunda agglutinin (WFA). Using a number of antibodies raised against the different regions of semaphorin3A (Sema3A) we demonstrate that this secreted chemorepulsive axon guidance protein is localised to WFA-positive PNNs around inhibitory interneurons in the cortex and several other PNN-bearing neurons throughout the brain and co-localises with aggrecan, versican, phosphacan and tenascin-R. Chondroitinase ABC (ChABC) was injected in the cortex to degrade glycosaminoglycans (GAGs) from the CSPGs, abolishing WFA staining of PNNs around the injection site. Sema3A-positive nets were no longer observed in the area devoid of WFA staining. In mice lacking the link protein Crtl1 in the CNS only vestigial PNNs are present, and in these mice there were no Sema3A-positive PNN structures. A biochemical analysis shows that Sema3A protein binds with high-affinity to CS-GAGs and aggrecan and versican extracted from PNNs in the adult rat brain, and a significant proportion of Sema3A is retrieved in brain extracts that are enriched in PNN-associated GAGs. The Sema3A receptor components PlexinA1 and A4 are selectively expressed by inhibitory interneurons in the cortex that are surrounded by Sema3A positive PNNs. We conclude that the chemorepulsive axon guidance molecule Sema3A is present in PNNs of the adult rodent brain, bound to the GAGs of the CSPGs. These observations suggest a novel concept namely that chemorepulsive axon guidance molecules like Sema3A may be important functional attributes of PNNs in the adult brain.


Subject(s)
Cerebral Cortex/metabolism , Extracellular Matrix/metabolism , Semaphorin-3A/metabolism , Aggrecans/metabolism , Animals , Cerebral Cortex/cytology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Glycosaminoglycans/metabolism , HEK293 Cells , Humans , Interneurons/metabolism , Mice , Mice, Inbred C57BL , Protein Binding , Proteoglycans/genetics , Proteoglycans/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Semaphorin-3A/genetics , Versicans/metabolism
6.
J Histochem Cytochem ; 60(12): 926-35, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22941419

ABSTRACT

A large number of complex glycosylation mechanisms take place in the Golgi apparatus. In epithelial cells, glycosylated protein molecules are transported to both the apical and the basolateral surface domains. Although the prevailing view is that the Golgi apparatus provides the same lumenal environment for glycosylation of apical and basolateral cargo proteins, there are indications that proteoglycans destined for the two opposite epithelial surfaces are exposed to different conditions in transit through the Golgi apparatus. We will here review data relating proteoglycan and glycoprotein synthesis to characteristics of the apical and basolateral secretory pathways in epithelial cells.


Subject(s)
Epithelial Cells/metabolism , Golgi Apparatus/metabolism , Proteoglycans/biosynthesis , Animals , Biological Transport , Cell Polarity , Chondroitin Sulfate Proteoglycans/metabolism , Dogs , Glycosaminoglycans/metabolism , Heparan Sulfate Proteoglycans/metabolism , Humans , Hydrogen-Ion Concentration , Madin Darby Canine Kidney Cells , Proteoglycans/metabolism
7.
Dev Neurobiol ; 71(11): 1073-89, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21898855

ABSTRACT

A perineuronal net (PNN) is a layer of lattice-like matrix which enwraps the surface of the soma and dendrites, and in some cases the axon initial segments, in sub-populations of neurons in the central nervous system (CNS). First reported by Camillo Golgi more than a century ago, the molecular structure and the potential role of this matrix have only been unraveled in the last few decades. PNNs are mainly composed of hyaluronan, chondroitin sulfate proteoglycans, link proteins, and tenascin R. The interactions between these molecules allow the formation of a stable pericellular complex surrounding synapses on the neuronal surface. PNNs appear late in development co-incident with the closure of critical periods for plasticity. They play a direct role in the control of CNS plasticity, and their removal is one way in which plasticity can be re-activated in the adult CNS. In this review, we examine the molecular components and formation of PNNs, their role in maturation and synaptic plasticity after CNS injury, and the possible mechanisms of PNN action.


Subject(s)
Central Nervous System/physiology , Extracellular Matrix/physiology , Nerve Regeneration/physiology , Neurons/physiology , Animals , Central Nervous System/chemistry , Central Nervous System/cytology , Extracellular Matrix/chemistry , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/physiology , Humans , Neuronal Plasticity/physiology , Neurons/chemistry , Neurons/cytology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/physiology
8.
J Neurosci ; 30(35): 11654-69, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20810886

ABSTRACT

Integrins play an important part in axon growth, but integrin traffic in neurons is poorly understood. Expression of the tenascin-C-binding integrin alpha9 promotes axon regeneration. We have therefore studied the mechanism by which alpha9 integrin and its partner beta1 are trafficked along axons and at the growth cone using adult DRG neurons and PC12 cells. We have focused on the small GTPase Rab11 and its effector Rab coupling protein (RCP), as they are involved in the long-range trafficking of beta1 integrins in other cells. Rab11 colocalizes with alpha9 and other alpha integrins and with beta1 integrin in growth cones and axons, and immunopurified Rab11 vesicles contain alpha9 and beta1. Endocytosed beta1 integrins traffic via Rab11. However, Rab11 vesicles in axons are generally static, and alpha9 integrins undergo bouts of movement during which they leave the Rab11 compartment. In growth cones, alpha9 and beta1 overlap with RCP, particularly at the growth cone periphery. We show that beta1 integrin trafficking during neurite outgrowth involves Rab11 and RCP, and that manipulation of these molecules alters surface integrin levels and axon growth, and can be used to enhance alpha9 integrin-dependent neurite outgrowth. Our data suggest that manipulation of trafficking via Rab11 and RCP could be a useful strategy for promoting integrin-dependent axonal regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Axons/physiology , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , Integrin beta1/metabolism , Membrane Proteins/physiology , Neurons/physiology , rab GTP-Binding Proteins/physiology , Adaptor Proteins, Signal Transducing/metabolism , Age Factors , Animals , Cells, Cultured , Ganglia, Spinal/metabolism , Growth Cones/metabolism , Growth Cones/physiology , Humans , Male , Membrane Proteins/metabolism , Neurons/cytology , Neurons/metabolism , PC12 Cells , Protein Transport/physiology , Rats , Rats, Sprague-Dawley , rab GTP-Binding Proteins/metabolism
9.
Traffic ; 9(3): 299-304, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18088319

ABSTRACT

The secretory route in eukaryotic cells has been regarded as one common pathway from the endoplasmic reticulum (ER) through the Golgi cisternae to the trans Golgi network where recognition, sorting and exit of cargo molecules are thought to occur. Morphologically, the ribosome-coated ER is observed throughout the cytoplasm, while the Golgi apparatus usually is confined to a perinuclear position in mammalian cells. However, Golgi outposts have been observed in neuronal dendrites and dispersed Golgi elements in skeletal muscle myofibers. In insects, like in Drosophila melanogaster imaginal disc cells and epidermal cells of Tobacco and Arabidopsis leafs, individual Golgi stacks are distributed throughout the cytoplasm. Golgi stacks do not only differ in their intracellular localization but also in the number of stacks from one to several hundreds. Each stack consists of closely aligned, flattened, membrane-limited cisternae. The number of cisternae in a Golgi stack is also variable, 2-3 in some ciliates, 10 in many plant cell types and up to 30 in certain euglenoids. The yeast Saccharomyces cerevisiae has a Golgi structure of minimal complexity with scattered solitary cisternae. It is assumed that the number of Golgi cisternae reflects the overall complexity of the enzymatic reactions that occur in their lumen, while the number of stacks reflects the load of macromolecules arriving at the cis side. In this review, we will focus on how the available morphological and biochemical data fit with the current view of protein sorting in the secretory pathway, particularly in polarized cells like neuronal and epithelial cells.


Subject(s)
Golgi Apparatus/physiology , Animals , Cell Polarity , Endoplasmic Reticulum/physiology , Epithelial Cells/physiology , Models, Biological , Protein Transport , trans-Golgi Network/physiology
10.
Glycobiology ; 18(1): 53-65, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17965432

ABSTRACT

The canine 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 fused to GFP was stably expressed with a typical Golgi localization in MDCK II cells (MDCK II-PAPST1). The capacity for PAPS uptake into Golgi vesicles was enhanced to almost three times that of Golgi vesicles isolated from untransfected cells. We have previously shown that chondroitin sulfate proteoglycans (CSPGs) are several times more intensely sulfated in the basolateral than the apical secretory pathway in MDCK II cells (Tveit H, Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes different modifications en route to the apical and basolateral surfaces of Madin-Darby canine kidney cells. J Biol Chem. 280:29596-29603). Here we demonstrate that increased availability of PAPS in the Golgi lumen enhances the sulfation of CSPG in the apical pathway several times, while sulfation of CSPGs in the basolateral pathway shows minor changes. Sulfation of heparan sulfate proteoglycans is essentially unchanged. Our data indicate that CSPG sulfation in the apical pathway of MDCK II cells occurs at suboptimal conditions, either because the sulfotransferases involved have high K(m) values, or there is a lower PAPS concentration in the lumen of the apical secretory route than in the basolateral counterpart.


Subject(s)
Chondroitin Sulfates/metabolism , Membrane Transport Proteins/metabolism , Phosphoadenosine Phosphosulfate/metabolism , Sulfates/metabolism , Animals , Cell Line , Disaccharides/metabolism , Dogs , Golgi Apparatus/metabolism , Membrane Transport Proteins/genetics , Proteoglycans/biosynthesis , Recombinant Proteins/metabolism , Transfection
11.
Int J Androl ; 29(3): 400-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16390495

ABSTRACT

Transgenic knockout of the gene encoding the prion-like protein Doppel (Dpl) leads to male infertility in mice. The precise role of Dpl in male fertility is still unclear, but sperm from Dpl-deficient mice appear to be unable to undergo the normal acrosome reaction that is necessary to penetrate the zona pellucida of the ovum. We have investigated the expression pattern and some biochemical properties of Dpl in sheep testicular tissue and spermatozoa. Neither the Dpl protein nor its mRNA was detected in pre-pubertal sheep testis. This was in contrast to the findings in adult rams where both Dpl mRNA and protein were present. The molecular mass and glycosylation pattern of sheep Dpl were similar to that of mice Dpl. The Dpl protein was detected in the seminiferous epithelium during the two final (7 and 8) and the two initial (1 and 2) stages of the spermatogenic cycle in a characteristic pattern. In stage 8, an intense brim of granular Dpl-immunoreactivity associated with maturation phase spermatids was observed, while after the release of spermatozoa in stages 1 and 2, the Dpl-staining was disseminated more diffusely in the epithelium, reaching the basal lamina. From stage 3 to stage 6, Dpl-immunoreactivity could not be detected, indicating that the Dpl protein had disappeared between stages 2 and 3. Dpl was not detected on ejaculated spermatozoa. These patterns of staining indicate that Dpl is enriched in residual bodies, which are phagocytosed and destroyed by Sertoli cells after release of sperm into the lumen of the seminiferous tubule.


Subject(s)
Prions/genetics , Prions/metabolism , Seminiferous Epithelium/physiology , Spermatozoa/physiology , Animals , Blotting, Western , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Glycosylation , Infertility, Male/physiopathology , Male , Phagocytosis/physiology , RNA, Messenger/analysis , Seminiferous Epithelium/cytology , Sexual Maturation , Sheep , Spermatids/physiology
12.
J Biol Chem ; 280(33): 29596-603, 2005 Aug 19.
Article in English | MEDLINE | ID: mdl-15980070

ABSTRACT

We have grown polarized epithelial Madin-Darby canine kidney II (MDCK II) cells on filters in the presence of [(35)S]sulfate, [(3)H]glucosamine, or [(35)S]cysteine/[(35)S]methionine to study proteoglycan (PG) synthesis, sorting, and secretion to the apical and basolateral media. Whereas most of the [(35)S]sulfate label was recovered in basolateral PGs, the [(3)H]glucosamine label was predominantly incorporated into the glycosaminoglycan chains of apical PGs, indicating that basolateral PGs are more intensely sulfated than their apical counterparts. Expression of the PG serglycin with a green fluorescent protein tag (SG-GFP) in MDCK II cells produced a protein core secreted 85% apically, which was largely modified by chondroitin sulfate chains. Surprisingly, the 15% of secreted SG-GFP molecules recovered basolaterally were more heavily sulfated and displayed a different sulfation pattern than the apical counterpart. More detailed studies of the differential modification of apically and basolaterally secreted SG-GFP indicate that the protein cores have been designated to apical and basolateral transport platforms before pathway-specific, post-translational modifications have been completed.


Subject(s)
Proteoglycans/metabolism , Animals , Cell Line , Dogs , Glucosamine/metabolism , Kidney/metabolism , Sulfates/metabolism , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...