Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.117
Filter
1.
Transl Psychiatry ; 14(1): 262, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902245

ABSTRACT

Whereas meta-analytical data highlight abnormal frontocortical macrostructure (thickness/surface area/volume) in Major Depressive Disorder (MDD), the underlying microstructural processes remain uncharted, due to the use of conventional MRI scanners and acquisition techniques. We uniquely combined Ultra-High Field MRI at 7.0 Tesla with Quantitative Imaging to map intracortical myelin (proxied by longitudinal relaxation time T1) and iron concentration (proxied by transverse relaxation time T2*), microstructural processes deemed particularly germane to cortical macrostructure. Informed by meta-analytical evidence, we focused specifically on orbitofrontal and rostral anterior cingulate cortices among adult MDD patients (N = 48) and matched healthy controls (HC; N = 10). Analyses probed the association of MDD diagnosis and clinical profile (severity, medication use, comorbid anxiety disorders, childhood trauma) with aforementioned microstructural properties. MDD diagnosis (p's < 0.05, Cohen's D = 0.55-0.66) and symptom severity (p's < 0.01, r = 0.271-0.267) both related to decreased intracortical myelination (higher T1 values) within the lateral orbitofrontal cortex, a region tightly coupled to processing negative affect and feelings of sadness in MDD. No relations were found with local iron concentrations. These findings allow uniquely fine-grained insights on frontocortical microstructure in MDD, and cautiously point to intracortical demyelination as a possible driver of macroscale cortical disintegrity in MDD.


Subject(s)
Depressive Disorder, Major , Gyrus Cinguli , Magnetic Resonance Imaging , Myelin Sheath , Prefrontal Cortex , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Female , Male , Adult , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/pathology , Myelin Sheath/pathology , Middle Aged , Iron/metabolism , Case-Control Studies
2.
J Psychiatr Res ; 174: 220-229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653030

ABSTRACT

INTRODUCTION: Dissociative identity disorder (DID) is characterised by, among others, subjectively reported inter-identity amnesia, reflecting compromised information transfer between dissociative identity states. Studies have found conflicting results regarding memory transfer between dissociative identity states. Here, we investigated inter-identity amnesia in individuals with DID using self-relevant, subject specific stimuli, and behavioural and neural measures. METHODS: Data of 46 matched participants were included; 14 individuals with DID in a trauma-avoidant state, 16 trauma-avoiding DID simulators, and 16 healthy controls. Reaction times and neural activation patterns related to three types of subject specific words were acquired and statistically analysed, namely non-self-relevant trauma-related words (NSt), self-relevant trauma-related words from a trauma-avoidant identity state (St), and trauma-related words from a trauma-related identity state (XSt). RESULTS: We found no differences in reaction times between XSt and St words and faster reaction times for XSt over NSt. Reaction times of the diagnosed DID group were the longest. Increased brain activation to XSt words was found in the frontal and parietal regions, while decreased brain activity was found in the anterior cingulate cortex in the diagnosed DID group. DISCUSSION: The current study reproduces and amalgamates previous behavioural reports as well as brain activation patterns. Our finding of increased cognitive control over self-relevant trauma-related knowledge processing has important clinical implications and calls for the redefinition of "inter-identity amnesia" to "inter-identity avoidance".


Subject(s)
Amnesia , Dissociative Identity Disorder , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Amnesia/physiopathology , Dissociative Identity Disorder/physiopathology , Young Adult , Reaction Time/physiology
3.
Compr Psychiatry ; 132: 152467, 2024 07.
Article in English | MEDLINE | ID: mdl-38608615

ABSTRACT

BACKGROUND: A RCT of a novel intervention to detect antidepressant medication response (the PReDicT Test) took place in five European countries, accompanied by a nested study of its acceptability and implementation presented here. The RCT results indicated no effect of the intervention on depression at 8 weeks (primary outcome), although effects on anxiety at 8 weeks and functioning at 24 weeks were found. METHODS: The nested study used mixed methods. The aim was to explore patient experiences of the Test including acceptability and implementation, to inform its use within care. A bespoke survey was completed by trial participants in five countries (n = 778) at week 8. Semi-structured interviews were carried out in two countries soon after week 8 (UK n = 22, Germany n = 20). Quantitative data was analysed descriptively; for qualitative data, thematic analysis was carried out using a framework approach. Results of the two datasets were interrogated together. OUTCOMES: Survey results showed the intervention was well received, with a majority of participants indicating they would use it again, and it gave them helpful extra information; a small minority indicated the Test made them feel worse. Qualitative data showed the Test had unexpected properties, including: instigating a process of reflection, giving participants feedback on progress and new understanding about their illness, and making participants feel supported and more engaged in treatment. INTERPRETATION: The qualitative and quantitative results are generally consistent. The Test's unexpected properties may explain why the RCT showed little effect, as properties were experienced across both trial arms. Beyond the RCT, the qualitative data sheds light on measurement reactivity, i.e., how measurements of depression can impact patients.


Subject(s)
Antidepressive Agents , Humans , Antidepressive Agents/therapeutic use , Female , Male , Adult , Middle Aged , Surveys and Questionnaires , Depression/drug therapy , Depression/psychology , Depression/diagnosis , Aged , Germany , Europe , Qualitative Research
4.
mSystems ; 9(4): e0132823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501800

ABSTRACT

Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors.


Subject(s)
Anti-Infective Agents , Livestock , Swine , Animals , Cattle , Drug Resistance, Bacterial/genetics , Chickens/microbiology , Anti-Infective Agents/pharmacology , Bacteria/genetics
5.
Environ Pollut ; 346: 123590, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387543

ABSTRACT

Adverse health effects have been linked with exposure to livestock farms, likely due to airborne microbial agents. Accurate exposure assessment is crucial in epidemiological studies, however limited studies have modelled bioaerosols. This study used measured concentrations in air of livestock commensals (Escherichia coli (E. coli) and Staphylococcus species (spp.)), and antimicrobial resistance genes (tetW and mecA) at 61 residential sites in a livestock-dense region in the Netherlands. For each microbial agent, land use regression (LUR) and random forest (RF) models were developed using Geographic Information System (GIS)-derived livestock-related characteristics as predictors. The mean and standard deviation of annual average concentrations (gene copies/m3) of E. coli, Staphylococcus spp., tetW and mecA were as follows: 38.9 (±1.98), 2574 (±3.29), 20991 (±2.11), and 15.9 (±2.58). Validated through 10-fold cross-validation (CV), the models moderately explained spatial variation of all microbial agents. The best performing model per agent explained respectively 38.4%, 20.9%, 33.3% and 27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and mecA. RF models had somewhat better performance than LUR models. Livestock predictors related to poultry and pig farms dominated all models. To conclude, the models developed enable enhanced estimates of airborne livestock-related microbial exposure in future epidemiological studies. Consequently, this will provide valuable insights into the public health implications of exposure to specific microbial agents.


Subject(s)
Air Pollutants , Livestock , Animals , Swine , Farms , Escherichia coli , Random Forest , Poultry , Air Pollutants/analysis
6.
Biol Psychiatry Glob Open Sci ; 4(1): 299-307, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298781

ABSTRACT

Background: Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective. Methods: Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (n= 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)-only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated. Results: rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network-related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group. Conclusions: Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology.

7.
Mol Psychiatry ; 29(3): 611-623, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38195980

ABSTRACT

Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/pathology , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Cerebellum/pathology , Cerebellum/diagnostic imaging , Female , Male , Adult , Magnetic Resonance Imaging/methods , Middle Aged , White Matter/pathology , White Matter/diagnostic imaging , Gray Matter/pathology , Organ Size , Deep Learning
8.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256162

ABSTRACT

Platelet activation and the complement system are mutually dependent. Here, we investigated the effects of storage time on complement activation and platelet function in routinely produced platelet concentrates. The platelet concentrates (n = 10) were stored at 22 °C for seven days and assessed daily for complement and platelet activation markers. Additionally, platelet function was analyzed in terms of their responsiveness to protease-activated receptor-1 (PAR-1) and thromboxane A2 receptor (TXA2R) activation and their capacity to adhere to collagen. Complement activation increased over the storage period for all analyzed markers, including the C1rs/C1-INH complex (fold change (FC) = 1.9; p < 0.001), MASP-1/C1-INH complex (FC = 2.0; p < 0.001), C4c (FC = 1.8, p < 0.001), C3bc (FC = 4.0; p < 0.01), and soluble C5b-9 (FC = 1.7, p < 0.001). Furthermore, the levels of soluble platelet activation markers increased in the concentrates over the seven-day period, including neutrophil-activating peptide-2 (FC = 2.5; p < 0.0001), transforming growth factor beta 1 (FC = 1.9; p < 0.001) and platelet factor 4 (FC = 2.1; p < 0.0001). The ability of platelets to respond to activation, as measured by surface expression of CD62P and CD63, decreased by 19% and 24% (p < 0.05) for PAR-1 and 69-72% (p < 0.05) for TXA2R activation, respectively, on Day 7 compared to Day 1. The extent of platelet binding to collagen was not significantly impaired during storage. In conclusion, we demonstrated that complement activation increased during the storage of platelets, and this correlated with increased platelet activation and a reduced ability of the platelets to respond to, primarily, TXA2R activation.


Subject(s)
Receptor, PAR-1 , Receptors, Thromboxane A2, Prostaglandin H2 , Blood Platelets , Complement Activation , Platelet Activation
9.
Environ Res ; 243: 117821, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38072102

ABSTRACT

BACKGROUND: Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS: In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS: Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS: Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Animals , Humans , Farms , Livestock , Endotoxins/toxicity , Agriculture , Air Pollution/analysis , Environmental Pollutants/analysis , Lung/chemistry , Environmental Exposure/analysis , Air Pollutants/analysis , Particulate Matter/analysis
10.
Chemosphere ; 349: 140706, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992907

ABSTRACT

The antidepressant fluoxetine is frequently detected in aquatic ecosystems, yet the effects on aquatic communities and ecosystems are still largely unknown. Therefore the aim of this study is to assess the effects of the long-term application of fluoxetine on key components of aquatic ecosystems including macroinvertebrate-, zooplankton-, phytoplankton- and microbial communities and organic matter decomposition by using traditional and non-traditional assessment methods. For this, we exposed 18 outdoor mesocosms (water volume of 1530 L and 10 cm of sediment) to five different concentrations of fluoxetine (0.2, 2, 20 and 200 µg/L) for eight weeks, followed by an eight-week recovery period. We quantified population and community effects by morphological identification, environmental DNA metabarcoding, in vitro and in vivo bioassays and measured organic matter decomposition as a measure of ecosystem functioning. We found effects of fluoxetine on bacterial, algal, zooplankton and macroinvertebrate communities and decomposition rates, mainly for the highest (200 µg/L) treatment. Treatment-related decreases in abundances were found for damselfly larvae (NOEC of 0.2 µg/L) and Sphaeriidae bivalves (NOEC of 20 µg/L), whereas Asellus aquaticus increased in abundance (NOEC <0.2 µg/L). Fluoxetine decreased photosynthetic activity and primary production of the suspended algae community. eDNA assessment provided additional insights by revealing that the algae belonging to the class Cryptophyceae and certain cyanobacteria taxa were the most negatively responding taxa to fluoxetine. Our results, together with results of others, suggest that fluoxetine can alter community structure and ecosystem functioning and that some impacts of fluoxetine on certain taxa can already be observed at environmentally realistic concentrations.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Animals , Fluoxetine/toxicity , DNA Barcoding, Taxonomic , Fresh Water/chemistry , Zooplankton , Phytoplankton , Antidepressive Agents/pharmacology , Biological Assay , Water Pollutants, Chemical/analysis
11.
Neuropsychopharmacology ; 49(3): 609-619, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38017161

ABSTRACT

Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/psychology , Magnetic Resonance Imaging , Brain , Emotions , Prefrontal Cortex
12.
Environ Pollut ; 343: 123199, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38128712

ABSTRACT

Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 µg/L). These concentrations include mean (0.15 µg/L) and maximum detected concentrations (15 and 150 µg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 µg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 µg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/toxicity , Sulfamethoxazole/toxicity , Sulfamethoxazole/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Zooplankton , Fresh Water/analysis
13.
Article in English | MEDLINE | ID: mdl-38083086

ABSTRACT

Motor Imagery (MI) Brain-Computer Interface (BCI) is a popular way of allowing disabled and healthy individuals to use brain signals to communicate with their environment, despite the technical and human factor challenges that affect MI BCI classification performance. This study explored the influence of paradigm choice and phase synchronization-based features on classification performance by comparing primary datasets to older supplemental datasets. Area Under the Curve (AUC) Receiver Operating Characteristics (ROC) curve was the metric for classification performance. Results showed that using both advanced paradigms and features significantly improved both classification and usability; TD-CSP-wPLI (16-30Hz) and S-CSP-wPLI (12-15Hz) frequency bands produced the most noticeable change in performance.


Subject(s)
Brain-Computer Interfaces , Imagination , Humans , Pilot Projects , Electroencephalography/methods , Signal Processing, Computer-Assisted
14.
Psychol Med ; : 1-8, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044036

ABSTRACT

BACKGROUND: Affiliating with delinquent peers may stimulate the development of antisocial behavior, especially for adolescents who are sensitive to social rewards. The current study examines whether the association between delinquent peer affiliation (DPA) and disruptive behavior interacts with functional brain correlates of reward sensitivity in early onset male adolescents delinquents. METHODS: Childhood arrestees (n = 126, mean age = 17.7 [s.d. 1.6]) completed a DPA questionnaire, and participated in an fMRI study in which reward sensitivity was operationalized through responsiveness of the ventral striatum (VS), amygdala, and medial prefrontal cortex (mPFC) during the monetary incentive delay paradigm (reward anticipation and outcome). Symptoms of disruptive behavior disorders (DBD) were assessed through structured psychiatric interviews (Diagnostic Interview Schedule for Children) with adolescents. RESULTS: DPA had a main effect on DBD symptoms. Adolescents with high VS reward responses showed a stronger significant positive association between DPA and DBD symptoms compared to low VS responders. No evidence for an interaction effect was found for the amygdala and mPFC. Post-hoc analyses revealed the positive association between DPA and DBD was only present in males, with a diminishing effect as age increased. CONCLUSIONS: We found evidence for a biosocial interaction between DPA and reward sensitivity of the VS in relation to DBD symptom severity. This study provides the first evidence of an interaction effect between a brain mechanism and an environmental factor in relation to DBD symptoms, implying that susceptibility to influences of delinquent peers may intertwine with individual biological differences.

15.
Eur J Psychotraumatol ; 14(2): 2281187, 2023.
Article in English | MEDLINE | ID: mdl-38154073

ABSTRACT

Background: Alexithymia, an inability to recognise one's emotions, has been associated with trauma-exposure and posttraumatic stress disorder (PTSD). Previous research suggests involvement of the oxytocin system, and socio-emotional neural processes. However, the paucity of neurobiological research on alexithymia, particularly in trauma-exposed populations, warrants further investigation.Objective: Explore associations between alexithymia, endogenous oxytocin levels, and socio-emotional brain function and morphometry in a trauma-exposed sample.Method: Dutch trauma-exposed police officers with (n = 38; 18 females) and without PTSD (n = 40; 20 females) were included. Alexithymia was assessed with the Toronto Alexithymia Scale (TAS-20). Endogenous salivary oxytocin was assessed during rest, using radioimmunoassay. Amygdala and insula reactivity to socio-emotional stimuli were assessed with functional MRI, amygdala and insula grey matter volume were derived using Freesurfer.Results: Alexithymia was higher in PTSD patients compared to trauma-exposed controls (F(1,70) = 54.031, p < .001). Within PTSD patients, alexithymia was positively associated with PTSD severity (ρ(36) = 0.497, p = .002). Alexithymia was not associated with childhood trauma exposure (ß = 0.076, p = .509), police work-related trauma exposure (ß = -0.107, p = .355), oxytocin levels (ß = -0.164, p = .161), insula (ß = -0.170, p = .158) or amygdala (ß = -0.175, p = .135) reactivity, or amygdala volume (ß = 0.146, p = .209). Insula volume was positively associated with alexithymia (ß = 0.222, p = .016), though not significant after multiple testing corrections. Bayesian analyses supported a lack of associations.Conclusions: No convincing neurobiological correlates of alexithymia were observed with any of the markers included in the current study. Yet, the current study confirmed high levels of alexithymia in PTSD patients, independent of trauma-exposure, substantiating alexithymia's relevance in the clinical phenotype of PTSD.


Little is known about neurobiological correlates of alexithymia in trauma-exposed and posttraumatic stress disorder (PTSD) populations.In this highly trauma-exposed sample, alexithymia was associated with PTSD symptoms, but not with childhood or adult trauma exposure, suggesting alexithymia is not a direct consequence of trauma.Alexithymia was not convincingly associated with salivary oxytocin, amygdala and insula reactivity to socio-emotional stimuli, amygdala or insula grey matter volume.


Subject(s)
Stress Disorders, Post-Traumatic , Female , Humans , Stress Disorders, Post-Traumatic/psychology , Affective Symptoms , Police/psychology , Oxytocin , Bayes Theorem , Emotions
16.
Neuroimage Clin ; 40: 103535, 2023.
Article in English | MEDLINE | ID: mdl-37984226

ABSTRACT

Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.


Subject(s)
Depressive Disorder, Major , Emotional Regulation , Humans , Depressive Disorder, Major/diagnostic imaging , Brain/diagnostic imaging , Emotions/physiology , Magnetic Resonance Imaging/methods
17.
Front Immunol ; 14: 1279612, 2023.
Article in English | MEDLINE | ID: mdl-37954579

ABSTRACT

Factor I (FI) is an essential regulator of the complement system. Together with co-factors, FI degrades C3b, which inhibits further complement activation. Genetic mutations in FI are associated with pathological conditions like age-related macular degeneration and atypical hemolytic uremic syndome. Here, we evaluated eight recombinant FI genetic variants found in patients. We assessed FI's co-factor activity in the presence of two co-factors; Factor H and soluble CR1. Different analytical assays were employed; SDS-PAGE to evaluate the degradation of C3b, ELISA to measure the generation of fluid phase iC3b and the degradation of surface-bound C3b using a novel Luminex bead-based assay. We demonstrate that mutations in the FIMAC and SP domains of FI led to significantly reduced protease activity, whereas the two analyzed mutations in the LDLRA2 domain did not result in any profound changes in FI's function. The different assays employed displayed a strong positive correlation, but differences in the activity of the genetic variants Ile55Phe and Gly261Asp could only be observed by combining different methods and co-factors for evaluating FI activity. In conclusion, our results provide a new perspective regarding available diagnostic tools for assessing the impact of mutations in FI.


Subject(s)
Complement C3b , Complement Factor I , Humans , Complement Factor I/genetics , Complement Factor I/metabolism , Complement C3b/metabolism , Mutation , Enzyme-Linked Immunosorbent Assay , Electrophoresis, Polyacrylamide Gel
18.
J Mol Biol ; 435(20): 168262, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37678707

ABSTRACT

Transferrin receptor 1 (TfR) delivers iron across cellular membranes by shuttling the ion carrier protein transferrin. This ability to deliver large protein ligands inside cells is taken advantage of by pathogens to infiltrate human cells. Notably, the receptor's outermost ectodomain, the apical domain, is used as a point of attachment for several viruses including hemorrhagic arenaviruses. To better understand interactions with the receptor it would be advantageous to probe sequence determinants in the apical domain with viral spike proteins. Here, we carried out affinity maturation of our computationally designed apical domain from human TfR to identify underlying driving forces that lead to better binding. The improved variants were confirmed by in vitro surface plasmon resonance measurements with dissociation constants obtained in the lower nanomolar range. It was found that the strong binding affinities for the optimized variants matched the strength of interactions with the native receptor. The structure of the best variant was determined experimentally indicating that the conformational change in the hairpin binding motif at the protein-protein interface plays a crucial role. The experimental methodology can be straightforwardly applied to other arenavirus or pathogens that use the apical domain. It can further be useful to probe host-virus compatibility or therapeutic strategies based on the transferrin receptor decoys.


Subject(s)
Arenaviruses, New World , Host-Pathogen Interactions , Receptors, Transferrin , Humans , Arenaviruses, New World/metabolism , Glycoproteins/chemistry , Protein Binding , Receptors, Transferrin/chemistry , Transferrin/chemistry , Transferrin/metabolism , Viral Proteins/metabolism
19.
bioRxiv ; 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37693487

ABSTRACT

Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant1-3. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants4,5. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells ex vivo. Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.

20.
Prev Vet Med ; 219: 106006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37647721

ABSTRACT

Due to globally increasing antimicrobial resistance (AMR), it is pivotal to understand factors contributing to antimicrobial use (AMU) to enable development and implementation of AMR-reducing interventions. Therefore, we explored seasonal variations of systemic AMU in food-producing animals in the Netherlands. Dutch surveillance data from January 2013 to December 2018 from cattle, pig, and broiler farms were used. AMU was expressed as the number of Defined Daily Dosages Animal per month (DDDA/animal-month) per farm by animal sector, antimicrobial line (first, second, and third), antimicrobial class, and farm type. Seasonality of AMU was analyzed using Generalized Additive Models (GAMs) with DDDA/animal-month as outcome variable, and year and month as independent variables. Year and month were modelled as smooth terms represented with penalized regression splines.Significant seasonality of AMU was found in the cattle and pig sectors, but not in broilers. Significant seasonality of AMU was found mainly for first-line antimicrobials. In the cattle sector, a significant increase during winter was found for the use of amphenicols (an increase of 23.8%) and long-acting macrolides (an increase of 3.4%). In the pig sector, seasonality of AMU was found for pleuromutilins (p < 0.001) with an increase of 20% in October-November. The seasonality of pleuromutilins was stronger in sows/piglets (an increase of 47%) than in fattening pigs (16% increase). Only in fattening pigs, the use of amphenicols showed a significant seasonality with an increase of 11% during winter (P < 0.001). AMU in cattle and pig sectors shows seasonal variations likely caused by seasonality of diseases. In broilers, no AMU seasonality was observed, possibly due to the controlled environment in Dutch farms. In the context of the one health concept, future studies are necessary to explore whether this seasonality is present in other populations and whether it has implications for antimicrobial resistance in humans through the food chain.


Subject(s)
Anti-Infective Agents , Chickens , Humans , Animals , Swine , Female , Cattle , Anti-Bacterial Agents , Netherlands/epidemiology , Farms , Chloramphenicol
SELECTION OF CITATIONS
SEARCH DETAIL
...