Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Blood ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805639

ABSTRACT

Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols reliant on culture. However, the kinetics and mechanisms by which this occurs remain incompletely characterized. Here, through time-resolved scRNA-Seq, matched in vivo functional analysis and the use of a reversible in vitro system of early G1 arrest, we define the sequence of transcriptional and functional events occurring during the first ex vivo division of human LT-HSCs. We demonstrate that the sharpest loss of LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limiting global variability in gene expression and transiently upregulating gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programmes in culture. However, contrary to current assumptions, we demonstrate that loss of HSC function ex vivo is independent of cell cycle progression. Finally, we show that targeting LT-HSC adaptation to culture by inhibiting early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrates that controlling early LT-HSC adaptation to ex vivo culture, for example via JAK inhibition, is of critical importance to improve HSC gene therapy and expansion protocols.

2.
Res Sq ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38405837

ABSTRACT

Clonal hematopoiesis (CH) arises when a hematopoietic stem cell (HSC) acquires a mutation that confers a competitive advantage over wild-type (WT) HSCs, resulting in its clonal expansion. Individuals with CH are at an increased risk of developing hematologic neoplasms and a range of age-related inflammatory illnesses1-3. Therapeutic interventions that suppress the expansion of mutant HSCs have the potential to prevent these CH-related illnesses; however, such interventions have not yet been identified. The most common CH driver mutations are in the DNA methyltransferase 3 alpha (DNMT3A) gene with arginine 882 (R882) being a mutation hotspot. Here we show that murine hematopoietic stem and progenitor cells (HSPCs) carrying the Dnmt3aR878H/+ mutation, which is equivalent to human DNMT3AR882H/+, have increased mitochondrial respiration compared with WT cells and are dependent on this metabolic reprogramming for their competitive advantage. Importantly, treatment with metformin, an oral anti-diabetic drug with inhibitory activity against complex I in the electron transport chain (ETC), reduced the fitness of Dnmt3aR878H/+ HSCs. Through a multi-omics approach, we discovered that metformin acts by enhancing the methylation potential in Dnmt3aR878H/+ HSPCs and reversing their aberrant DNA CpG methylation and histone H3K27 trimethylation (H3K27me3) profiles. Metformin also reduced the fitness of human DNMT3AR882H HSPCs generated by prime editing. Our findings provide preclinical rationale for investigating metformin as a preventive intervention against illnesses associated with DNMT3AR882 mutation-driven CH in humans.

3.
bioRxiv ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38106088

ABSTRACT

Sequencing of bulk tumor populations has improved genetic classification and risk assessment of B-ALL, but does not directly examine intratumor heterogeneity or infer leukemia cellular origins. We profiled 89 B-ALL samples by single-cell RNA-seq (scRNA-seq) and compared them to a reference map of normal human B-cell development established using both functional and molecular assays. Intra-sample heterogeneity was driven by cell cycle, metabolism, differentiation, and inflammation transcriptional programs. By inference of B lineage developmental state composition, nearly all samples possessed a high abundance of pro-B cells, with variation between samples mainly driven by sub-populations. However, ZNF384- r and DUX4- r B-ALL showed composition enrichment of hematopoietic stem cells, BCR::ABL1 and KMT2A -r ALL of Early Lymphoid progenitors, MEF2D -r and TCF3::PBX1 of Pre-B cells. Enrichment of Early Lymphoid progenitors correlated with high-risk clinical features. Understanding variation in transcriptional programs and developmental states of B-ALL by scRNA-seq refines existing clinical and genomic classifications and improves prediction of treatment outcome.

4.
Nat Genet ; 55(7): 1186-1197, 2023 07.
Article in English | MEDLINE | ID: mdl-37337105

ABSTRACT

In BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes. A later arrest was associated with lineage fidelity, durable leukemia remissions and improved patient outcomes. Each maturation arrest was marked by specific genomic events that control different transition points in B-cell development. Interestingly, these events were absent in BCR-ABL1+ preleukemic stem cells isolated from patients regardless of subtype, which supports that transcriptomic phenotypes are determined downstream of the leukemia-initialing event. Overall, our data indicate that treatment response and TKI efficacy are unexpected outcomes of the differentiation stage at which this leukemia transforms.


Subject(s)
Fusion Proteins, bcr-abl , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Transcriptome/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Gene Expression Profiling , Cell Differentiation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
5.
Cancer Discov ; 13(8): 1922-1947, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37191437

ABSTRACT

Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/ßc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/ßc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/ßc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance. SIGNIFICANCE: Stemness is a hallmark of many cancers and is largely responsible for disease emergence, progression, and relapse. Our finding that clinically significant stemness programs in AML are directly regulated by different stoichiometries of cytokine receptors represents a hitherto unexplained mechanism underlying cell-fate decisions in cancer stem cell hierarchies. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Cytokine , Humans , Receptors, Cytokine/therapeutic use , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Phosphorylation , Signal Transduction , Cell Proliferation , Neoplastic Stem Cells
6.
bioRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034724

ABSTRACT

Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.

7.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37021547

ABSTRACT

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Subject(s)
Leukemia, Myeloid, Acute , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Proteomics , Neoplastic Stem Cells/metabolism , Lipid Metabolism , Homeostasis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Fatty Acids/metabolism , Fatty Acids/pharmacology , Fatty Acids/therapeutic use , Cholesterol
8.
Blood Cancer Discov ; 4(3): 180-207, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36763002

ABSTRACT

Acute myeloid leukemia (AML) is fueled by leukemic stem cells (LSC) whose determinants are challenging to discern from hematopoietic stem cells (HSC) or uncover by approaches focused on general cell properties. We have identified a set of RNA-binding proteins (RBP) selectively enriched in human AML LSCs. Using an in vivo two-step CRISPR-Cas9 screen to assay stem cell functionality, we found 32 RBPs essential for LSCs in MLL-AF9;NrasG12D AML. Loss-of-function approaches targeting key hit RBP ELAVL1 compromised LSC-driven in vivo leukemic reconstitution, and selectively depleted primitive malignant versus healthy cells. Integrative multiomics revealed differentiation, splicing, and mitochondrial metabolism as key features defining the leukemic ELAVL1-mRNA interactome with mitochondrial import protein, TOMM34, being a direct ELAVL1-stabilized target whose repression impairs AML propagation. Altogether, using a stem cell-adapted in vivo CRISPR screen, this work demonstrates pervasive reliance on RBPs as regulators of LSCs and highlights their potential as therapeutic targets in AML. SIGNIFICANCE: LSC-targeted therapies remain a significant unmet need in AML. We developed a stem-cell-adapted in vivo CRISPR screen to identify key LSC drivers. We uncover widespread RNA-binding protein dependencies in LSCs, including ELAVL1, which we identify as a novel therapeutic vulnerability through its regulation of mitochondrial metabolism. This article is highlighted in the In This Issue feature, p. 171.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Cell Differentiation , Hematopoietic Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/therapeutic use , Mitochondrial Precursor Protein Import Complex Proteins , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism
9.
Leukemia ; 37(4): 751-764, 2023 04.
Article in English | MEDLINE | ID: mdl-36720973

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous, aggressive malignancy with dismal prognosis and with limited availability of targeted therapies. Epigenetic deregulation contributes to AML pathogenesis. KDM6 proteins are histone-3-lysine-27-demethylases that play context-dependent roles in AML. We inform that KDM6-demethylase function critically regulates DNA-damage-repair-(DDR) gene expression in AML. Mechanistically, KDM6 expression is regulated by genotoxic stress, with deficiency of KDM6A-(UTX) and KDM6B-(JMJD3) impairing DDR transcriptional activation and compromising repair potential. Acquired KDM6A loss-of-function mutations are implicated in chemoresistance, although a significant percentage of relapsed-AML has upregulated KDM6A. Olaparib treatment reduced engraftment of KDM6A-mutant-AML-patient-derived xenografts, highlighting synthetic lethality using Poly-(ADP-ribose)-polymerase-(PARP)-inhibition. Crucially, a higher KDM6A expression is correlated with venetoclax tolerance. Loss of KDM6A increased mitochondrial activity, BCL2 expression, and sensitized AML cells to venetoclax. Additionally, BCL2A1 associates with venetoclax resistance, and KDM6A loss was accompanied with a downregulated BCL2A1. Corroborating these results, dual targeting of PARP and BCL2 was superior to PARP or BCL2 inhibitor monotherapy in inducing AML apoptosis, and primary AML cells carrying KDM6A-domain mutations were even more sensitive to the combination. Together, our study illustrates a mechanistic rationale in support of a novel combination therapy for AML based on subtype-heterogeneity, and establishes KDM6A as a molecular regulator for determining therapeutic efficacy.


Subject(s)
Leukemia, Myeloid, Acute , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Histone Demethylases/genetics , Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2/genetics
10.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234771

ABSTRACT

Initial classification of acute leukemia involves the assignment of blasts to cell states within the hematopoietic hierarchy based on morphological and immunophenotypic features. Yet, these traditional classification approaches lack precision, especially at the level of immature blasts. Single-cell RNA-sequencing (scRNA-seq) enables precise determination of cell state using thousands of markers, thus providing an opportunity to re-examine present-day classification schemes of acute leukemia. Here, we developed a detailed reference map of human bone marrow hematopoiesis from 263,519 single-cell transcriptomes spanning 55 cellular states. Cell state annotations were benchmarked against purified cell populations, and in-depth characterization of gene expression programs underlying hematopoietic differentiation was undertaken. Projection of single-cell transcriptomes from 175 samples spanning acute myeloid leukemia (AML), mixed phenotype acute leukemia (MPAL), and acute erythroid leukemia (AEL) revealed 11 subtypes involving distinct stages of hematopoietic differentiation. These included AML subtypes with notable lymphoid or erythroid lineage priming, challenging traditional diagnostic boundaries between AML, MPAL, and AEL. Quantification of lineage priming in bulk patient cohorts revealed specific genetic alterations associated with this unconventional lineage priming. Integration of transcriptional and genetic information at the single-cell level revealed how genetic subclones can induce lineage restriction, differentiation blocks, or expansion of mature myeloid cells. Furthermore, we demonstrate that distinct cellular hierarchies can co-exist within individual patients, providing insight into AML evolution in response to varying selection pressures. Together, precise mapping of hematopoietic cell states can serve as a foundation for refining disease classification in acute leukemia and understanding response or resistance to emerging therapies.

11.
Leukemia ; 36(11): 2690-2704, 2022 11.
Article in English | MEDLINE | ID: mdl-36131042

ABSTRACT

Many cancers are organized as cellular hierarchies sustained by cancer stem cells (CSC), whose eradication is crucial for achieving long-term remission. Difficulties to isolate and undertake in vitro and in vivo experimental studies of rare CSC under conditions that preserve their original properties currently constitute a bottleneck for identifying molecular mechanisms involving coding and non-coding genomic regions that govern stemness. We focussed on acute myeloid leukemia (AML) as a paradigm of the CSC model and developed a patient-derived system termed OCI-AML22 that recapitulates the cellular hierarchy driven by leukemia stem cells (LSC). Through classical flow sorting and functional analyses, we established that a single phenotypic population is highly enriched for LSC. The LSC fraction can be easily isolated and serially expanded in culture or in xenografts while faithfully recapitulating functional, transcriptional and epigenetic features of primary LSCs. A novel non-coding regulatory element was identified with a new computational approach using functionally validated primary AML LSC fractions and its role in LSC stemness validated through efficient CRISPR editing using methods optimized for OCI-AML22 LSC. Collectively, OCI-AML22 constitutes a valuable resource to uncover mechanisms governing CSC driven malignancies.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology
12.
Am J Hematol ; 97(12): 1538-1547, 2022 12.
Article in English | MEDLINE | ID: mdl-36087071

ABSTRACT

Autologous stem cell transplantation (ASCT) remains a key therapeutic strategy for treating patients with relapsed or refractory non-Hodgkin and Hodgkin lymphoma. Clonal hematopoiesis (CH) has been proposed as a major contributor not only to the development of therapy-related myeloid neoplasms but also to inferior overall survival (OS) in patients who had undergone ASCT. Herein, we aimed to investigate the prognostic implications of CH after ASCT in a cohort of 420 lymphoma patients using ultra-deep, highly sensitive error-correction sequencing. CH was identified in the stem cell product samples of 181 patients (43.1%) and was most common in those with T-cell lymphoma (72.2%). The presence of CH was associated with a longer time to neutrophil and platelet recovery. Moreover, patients with evidence of CH had inferior 5-year OS from the time of first relapse (39.4% vs. 45.8%, p = .043) and from the time of ASCT (51.8% vs. 59.3%, p = .018). The adverse prognostic impact of CH was not due to therapy-related myeloid neoplasms, the incidence of which was low in our cohort (10-year cumulative incidence of 3.3% vs. 3.0% in those with and without CH, p = .445). In terms of specific-gene mutations, adverse OS was mostly associated with PPM1D mutations (hazard ratio (HR) 1.74, 95% confidence interval (CI) 1.13-2.67, p = .011). In summary, we found that CH is associated with an increased risk of non-lymphoma-related death after ASCT, which suggests that lymphoma survivors with CH may need intensified surveillance strategies to prevent and treat late complications.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hodgkin Disease , Lymphoma , Neoplasms, Second Primary , Humans , Transplantation, Autologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Clonal Hematopoiesis , Lymphoma/therapy , Lymphoma/complications , Hodgkin Disease/complications , Neoplasms, Second Primary/therapy , Neoplasms, Second Primary/genetics , Stem Cell Transplantation/adverse effects , Retrospective Studies
13.
Am J Transplant ; 22(12): 3078-3086, 2022 12.
Article in English | MEDLINE | ID: mdl-35971851

ABSTRACT

Novel risk stratification and non-invasive surveillance methods are needed in orthotopic heart transplant (OHT) to reduce morbidity and mortality post-transplant. Clonal hematopoiesis (CH) refers to the acquisition of specific gene mutations in hematopoietic stem cells linked to enhanced inflammation and worse cardiovascular outcomes. The purpose of this study was to investigate the association between CH and OHT. Blood samples were collected from 127 OHT recipients. Error-corrected sequencing was used to detect CH-associated mutations. We evaluated the association between CH and acute cellular rejection, CMV infection, cardiac allograft vasculopathy (CAV), malignancies, and survival. CH mutations were detected in 26 (20.5%) patients, mostly in DNMT3A, ASXL1, and TET2. Patients with CH showed a higher frequency of CAV grade 2 or 3 (0% vs. 18%, p < .001). Moreover, a higher mortality rate was observed in patients with CH (11 [42%] vs. 15 [15%], p = .008) with an adjusted hazard ratio of 2.9 (95% CI, 1.4-6.3; p = .003). CH was not associated with acute cellular rejection, CMV infection or malignancies. The prevalence of CH in OHT recipients is higher than previously reported for the general population of the same age group, with an associated higher prevalence of CAV and mortality.


Subject(s)
Cytomegalovirus Infections , Heart Transplantation , Humans , Clonal Hematopoiesis/genetics , Graft Rejection/epidemiology , Heart , Hematopoiesis
14.
EMBO Rep ; 23(10): e55502, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35971894

ABSTRACT

Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.


Subject(s)
Follistatin-Related Proteins , Animals , Cells, Cultured , Endothelial Protein C Receptor/metabolism , Follistatin-Related Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Mice , Transcription Factors/metabolism
15.
Eur J Heart Fail ; 24(9): 1573-1582, 2022 09.
Article in English | MEDLINE | ID: mdl-35729851

ABSTRACT

AIMS: Cardiogenic shock (CS) with variable systemic inflammation may be responsible for patient heterogeneity and the exceedingly high mortality rate. Cardiovascular events have been associated with clonal haematopoiesis (CH) where specific gene mutations in haematopoietic stem cells lead to clonal expansion and the development of inflammation. This study aims to assess the prevalence of CH and its association with survival in a population of CS patients in a quaternary centre. METHODS AND RESULTS: We compared the frequency of CH mutations among 341 CS patients and 345 ambulatory heart failure (HF) patients matched for age, sex, ejection fraction, and HF aetiology. The association of CH with survival and levels of circulating inflammatory cytokines was analysed. We detected 266 CH mutations in 149 of 686 (22%) patients. CS patients had a higher prevalence of CH-related mutations than HF patients (odds ratio 1.5; 95% confidence interval [CI] 1.0-2.1, p = 0.02) and was associated with decreased survival (30 days: hazard ratio [HR] 2.7; 95% CI 1.3-5.7, p = 0.006; 90 days: HR 2.2; 95% CI 1.3-3.9, p = 0.003; and 3 years: HR 1.7; 95% CI 1.1-2.8, p = 0.01). TET2 or ASXL1 mutations were associated with lower survival in CS patients at all time-points (p ≤ 0.03). CS patients with TET2 mutations had higher circulating levels of SCD40L, interferon-γ, interleukin-4, and tumour necrosis factor-α (p ≤ 0.04), while those with ASXL1 mutations had decreased levels of CCL7 (p = 0.03). CONCLUSIONS: Cardiogenic shock patients have high frequency of CH, notably mutations in TET2 and ASXL1. This was associated with reduced survival and dysregulation of circulating inflammatory cytokines in those CS patients with CH.


Subject(s)
Heart Failure , Shock, Cardiogenic , Clonal Hematopoiesis , Heart Failure/complications , Heart Failure/genetics , Humans , Inflammation , Interferon-gamma , Interleukin-4 , Shock, Cardiogenic/etiology , Tumor Necrosis Factor-alpha
16.
Nat Cell Biol ; 24(6): 872-884, 2022 06.
Article in English | MEDLINE | ID: mdl-35668135

ABSTRACT

Mitochondrial metabolites regulate leukaemic and normal stem cells by affecting epigenetic marks. How mitochondrial enzymes localize to the nucleus to control stem cell function is less understood. We discovered that the mitochondrial metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus in leukaemic and normal haematopoietic stem cells. Overexpression of nuclear HK2 increases leukaemic stem cell properties and decreases differentiation, whereas selective nuclear HK2 knockdown promotes differentiation and decreases stem cell function. Nuclear HK2 localization is phosphorylation-dependent, requires active import and export, and regulates differentiation independently of its enzymatic activity. HK2 interacts with nuclear proteins regulating chromatin openness, increasing chromatin accessibilities at leukaemic stem cell-positive signature and DNA-repair sites. Nuclear HK2 overexpression decreases double-strand breaks and confers chemoresistance, which may contribute to the mechanism by which leukaemic stem cells resist DNA-damaging agents. Thus, we describe a non-canonical mechanism by which mitochondrial enzymes influence stem cell function independently of their metabolic function.


Subject(s)
Hexokinase , Leukemia, Myeloid, Acute , Chromatin/metabolism , DNA/metabolism , Hematopoietic Stem Cells/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism
17.
Nat Med ; 28(6): 1212-1223, 2022 06.
Article in English | MEDLINE | ID: mdl-35618837

ABSTRACT

The treatment landscape of acute myeloid leukemia (AML) is evolving, with promising therapies entering clinical translation, yet patient responses remain heterogeneous, and biomarkers for tailoring treatment are lacking. To understand how disease heterogeneity links with therapy response, we determined the leukemia cell hierarchy makeup from bulk transcriptomes of more than 1,000 patients through deconvolution using single-cell reference profiles of leukemia stem, progenitor and mature cell types. Leukemia hierarchy composition was associated with functional, genomic and clinical properties and converged into four overall classes, spanning Primitive, Mature, GMP and Intermediate. Critically, variation in hierarchy composition along the Primitive versus GMP or Primitive versus Mature axes were associated with response to chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A seven-gene biomarker derived from the Primitive versus Mature axis was associated with response to 105 investigational drugs. Cellular hierarchy composition constitutes a novel framework for understanding disease biology and advancing precision medicine in AML.


Subject(s)
Leukemia, Myeloid, Acute , Biomarkers , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism
18.
Blood ; 140(9): 992-1008, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35639948

ABSTRACT

Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and its long-term integrity. Although regulation of stress responses incurred as a result of HSC activation is recognized as important in maintaining stem cell function, little is understood of the preventive machinery present in human HSCs that may serve to resist their activation and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is essential for long-term HSC function and, when overexpressed, endows a 15.6-fold enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide measures of chromatin occupancy and PLAG1-directed gene expression changes combined with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell growth and division, and enhances survival, with the primitive cell advantages it imparts being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1 capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis including 4EBP1 and translation-targeting miR-127 and does so independently of stress response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential if its targeting for therapeutic benefit.


Subject(s)
DNA-Binding Proteins/metabolism , Hematopoietic Stem Cells , Transcription Factors , Cell Differentiation/physiology , Cell Proliferation , Cell Self Renewal , Hematopoietic Stem Cells/metabolism , Humans , Transcription Factors/metabolism
19.
Blood Cancer Discov ; 3(3): 208-219, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35247876

ABSTRACT

Cancers are composed of genetically distinct subpopulations of malignant cells. DNA-sequencing data can be used to determine the somatic point mutations specific to each population and build clone trees describing the evolutionary relationships between them. These clone trees can reveal critical points in disease development and inform treatment. Pairtree is a new method that constructs more accurate and detailed clone trees than previously possible using variant allele frequency data from one or more bulk cancer samples. It does so by first building a Pairs Tensor that captures the evolutionary relationships between pairs of subpopulations, and then it uses these relations to constrain clone trees and infer violations of the infinite sites assumption. Pairtree can accurately build clone trees using up to 100 samples per cancer that contain 30 or more subclonal populations. On 14 B-progenitor acute lymphoblastic leukemias, Pairtree replicates or improves upon expert-derived clone tree reconstructions. SIGNIFICANCE: Clone trees illustrate the evolutionary history of a cancer and can provide insights into how the disease changed through time (e.g., between diagnosis and relapse). Pairtree uses DNA-sequencing data from many samples of the same cancer to build more detailed and accurate clone trees than previously possible. See related commentary by Miller, p. 176. This article is highlighted in the In This Issue feature, p. 171.


Subject(s)
Algorithms , Neoplasms , DNA , Evolution, Molecular , Humans , Neoplasms/diagnosis , Sequence Analysis, DNA
20.
Cell Rep ; 38(10): 110481, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263585

ABSTRACT

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Cell Line, Tumor , Cell Self Renewal/genetics , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , MicroRNAs/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...