Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Commun ; 9(1): 4273, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323170

ABSTRACT

The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique-Subtype and Stage Inference (SuStaIn)-able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer's disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10-4) or temporal stage (p = 3.96 × 10-5). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine.


Subject(s)
Neurodegenerative Diseases/classification , Neurodegenerative Diseases/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Genotype , Humans , Models, Neurological , Phenotype , Reproducibility of Results , Time Factors
2.
Alzheimers Res Ther ; 10(1): 79, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30111356

ABSTRACT

BACKGROUND: Reliable biomarkers of frontotemporal dementia (FTD) are currently lacking. FTD may be associated with chronic immune dysfunction, microglial activation and raised inflammatory markers, particularly in progranulin (GRN) mutation carriers. Levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) are elevated in Alzheimer's disease (AD), but they have not been fully explored in FTD. METHODS: We investigated whether cerebrospinal fluid (CSF) sTREM2 levels differ between FTD and controls, across different clinical and genetic subtypes of FTD, or between individuals with FTD due to AD versus non-AD pathology (based on CSF neurodegenerative biomarkers). We also assessed relationships between CSF sTREM2 and other CSF biomarkers (total tau [T-tau], tau phosphorylated at position threonine-181 [P-tau] and ß-amyloid 1-42 [Aß42]) and age and disease duration. Biomarker levels were measured using immunoassays in 17 healthy controls and 64 patients with FTD (behavioural variant FTD, n = 20; primary progressive aphasia, n = 44). Ten of 64 had familial FTD, with mutations in GRN (n = 3), MAPT (n = 4), or C9orf72 (n = 3). Fifteen of 64 had neurodegenerative biomarkers consistent with AD pathology (11 of whom had logopenic variant PPA). Levels were compared using multivariable linear regressions. RESULTS: CSF sTREM2 levels did not differ between FTD and controls or between clinical subgroups. However, GRN mutation carriers had higher levels than controls (mean ([SD] = 9.7 [2.9] vs. 6.8 [1.6] ng/ml; P = 0.028) and MAPT (3.9 [1.5] ng/ml; P = 0.003] or C9orf72 [4.6 [1.8] ng/ml; P = 0.006) mutation carriers. Individuals with AD-like CSF had higher sTREM2 levels than those with non-AD-like CSF (9.0 [3.6] vs. 6.9 [3.0] ng/ml; P = 0.029). CSF sTREM2 levels were associated with T-tau levels in control and FTD groups and also with P-tau in those with FTD and AD-like CSF. CSF sTREM2 levels were influenced by both age and disease duration in FTD. CONCLUSIONS: Although CSF sTREM2 levels are not raised in FTD overall or in a particular clinical subtype of FTD, levels are raised in familial FTD associated with GRN mutations and in FTD syndromes due to AD pathology. Because CSF sTREM2 levels correlate with a marker of neuronal injury (T-tau), sTREM2 should be explored as a biomarker of disease intensity in future longitudinal studies of FTD.


Subject(s)
Frontotemporal Dementia , Membrane Glycoproteins/cerebrospinal fluid , Age Factors , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Aphasia, Primary Progressive/genetics , C9orf72 Protein/genetics , Cohort Studies , Female , Frontotemporal Dementia/cerebrospinal fluid , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Gene Expression Regulation/genetics , Humans , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Phosphorylation , Receptors, Immunologic , Statistics, Nonparametric , tau Proteins/cerebrospinal fluid , tau Proteins/genetics
3.
J Alzheimers Dis ; 65(1): 147-163, 2018.
Article in English | MEDLINE | ID: mdl-30010122

ABSTRACT

BACKGROUND: The overlap between frontotemporal dementia (FTD) and primary psychiatric disorders has been brought to light by reports of prominent neuropsychiatric symptoms (NPS) in FTD-related genetic mutations, particularly among C9orf72 and GRN carriers. It has been recently demonstrated that early neuroanatomical changes in genetic FTD may be different across the major disease-causing mutations. OBJECTIVE: We aimed to identify whether NPS could be driven by distinct structural correlates. METHODS: One hundred and sixty-seven mutation carriers (75 GRN, 60 C9orf72, and 32 MAPT) were included from the Genetic FTD Initiative (GENFI) study, a large international cohort of genetic FTD. Neuropsychiatric symptoms including delusions, hallucinations (visual, auditory, and tactile), depression, and anxiety were investigated using a structured interview. Voxel-based morphometry was performed to identify neuroanatomical correlates of NPS. RESULTS: Psychotic symptoms correlated mainly with grey matter (GM) atrophy in the anterior insula, left thalamus, cerebellum, and cortical regions including frontal, parietal, and occipital lobes in GRN mutations carriers. GM atrophy in posterior structures of the default-mode network was associated with anxiety in the GRN group. Delusions in C9orf72 expansion carriers were mainly associated with left frontal cortical atrophy. Cerebellar atrophy was found to be correlated only with anxiety in C9orf72 carriers. NPS in the MAPT group were mainly associated with volume loss in the temporal lobe. CONCLUSION: Neuroanatomical correlates of NPS appear to be distinct across the main forms of genetic FTD. Overall, our findings support overlapping brain structural changes between FTD and primary psychiatric disorders.


Subject(s)
C9orf72 Protein/genetics , Frontotemporal Dementia , Mutation/genetics , Progranulins/genetics , Psychotic Disorders/etiology , tau Proteins/genetics , Adult , Aged , Brain/diagnostic imaging , Cohort Studies , Female , Frontotemporal Dementia/complications , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged
4.
Ann Clin Transl Neurol ; 5(6): 687-696, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29928652

ABSTRACT

OBJECTIVE: To establish proof-of-principle for the use of heart rate responses as objective measures of degraded emotional reactivity across the frontotemporal dementia spectrum, and to demonstrate specific relationships between cardiac autonomic responses and anatomical patterns of neurodegeneration. METHODS: Thirty-two patients representing all major frontotemporal dementia syndromes and 19 healthy older controls performed an emotion recognition task, viewing dynamic, naturalistic videos of facial emotions while ECG was recorded. Cardiac reactivity was indexed as the increase in interbeat interval at the onset of facial emotions. Gray matter associations of emotional reactivity were assessed using voxel-based morphometry of patients' brain MR images. RESULTS: Relative to healthy controls, all patient groups had impaired emotion identification, whereas cardiac reactivity was attenuated in those groups with predominant fronto-insular atrophy (behavioral variant frontotemporal dementia and nonfluent primary progressive aphasia), but preserved in syndromes focused on the anterior temporal lobes (right temporal variant frontotemporal dementia and semantic variant primary progressive aphasia). Impaired cardiac reactivity correlated with gray matter atrophy in a fronto-cingulo-insular network that overlapped correlates of cognitive emotion processing. INTERPRETATION: Autonomic indices of emotional reactivity dissociate from emotion categorization ability, stratifying frontotemporal dementia syndromes and showing promise as novel biomarkers. Attenuated cardiac responses to the emotions of others suggest a core pathophysiological mechanism for emotional blunting and degraded interpersonal reactivity in these diseases.

5.
Ann Clin Transl Neurol ; 5(5): 583-597, 2018 May.
Article in English | MEDLINE | ID: mdl-29761121

ABSTRACT

OBJECTIVE: To evaluate poly(GP), a dipeptide repeat protein, and neurofilament light chain (NfL) as biomarkers in presymptomatic C9orf72 repeat expansion carriers and patients with C9orf72-associated frontotemporal dementia. Additionally, to investigate the relationship of poly(GP) with indicators of neurodegeneration as measured by NfL and grey matter volume. METHODS: We measured poly(GP) and NfL levels in cerebrospinal fluid (CSF) from 25 presymptomatic C9orf72 expansion carriers, 64 symptomatic expansion carriers with dementia, and 12 noncarriers. We explored associations with grey matter volumes using region of interest and voxel-wise analyses. RESULTS: Poly(GP) was present in C9orf72 expansion carriers and absent in noncarriers (specificity 100%, sensitivity 97%). Presymptomatic carriers had lower poly(GP) levels than symptomatic carriers. NfL levels were higher in symptomatic carriers than in presymptomatic carriers and healthy noncarriers. NfL was highest in patients with concomitant motor neuron disease, and correlated with disease severity and survival. Associations between poly(GP) levels and small grey matter regions emerged but did not survive multiple comparison correction, while higher NfL levels were associated with atrophy in frontotemporoparietal cortices and the thalamus. INTERPRETATION: This study of C9orf72 expansion carriers reveals that: (1) poly(GP) levels discriminate presymptomatic and symptomatic expansion carriers from noncarriers, but are not associated with indicators of neurodegeneration; and (2) NfL levels are associated with grey matter atrophy, disease severity, and shorter survival. Together, poly(GP) and NfL show promise as complementary biomarkers for clinical trials for C9orf72-associated frontotemporal dementia, with poly(GP) as a potential marker for target engagement and NfL as a marker of disease activity and progression.

6.
Alzheimers Res Ther ; 10(1): 46, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29793546

ABSTRACT

BACKGROUND: In patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72) genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy before the appearance of symptoms. METHODS: Magnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior cortical areas). RESULTS: Intra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72. Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers. CONCLUSIONS: These simple-to-use and reproducible scales may be useful tools in the clinical setting for the discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy prior to onset in those with MAPT mutations.


Subject(s)
Brain/pathology , Frontotemporal Dementia/complications , Frontotemporal Dementia/genetics , tau Proteins/genetics , Adult , Atrophy/classification , Atrophy/diagnostic imaging , Atrophy/etiology , Brain/diagnostic imaging , Cohort Studies , Female , Frontotemporal Dementia/diagnostic imaging , Humans , International Cooperation , Magnetic Resonance Imaging , Male , Middle Aged , Progranulins/genetics , RNA-Binding Proteins/genetics , Severity of Illness Index , Statistics, Nonparametric
7.
J Neurol Neurosurg Psychiatry ; 89(8): 804-807, 2018 08.
Article in English | MEDLINE | ID: mdl-29440230

ABSTRACT

BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder presenting clinically with personality change (behavioural variant FTD (bvFTD)) or language deficits (primary progressive aphasia (PPA)). About a third of FTD is familial with mutations in GRN, MAPT and C9orf72 being the major genetic causes. Robust biomarkers of the underlying pathology are still lacking in FTD with no markers currently being able to distinguish those with tau and TDP-43 inclusions during life. METHODS: This study used an ultrasensitive single molecule methodology to measure plasma tau concentrations in 176 participants: 71 with bvFTD, 83 with PPA and 22 healthy controls. The patient group included 36 with pathogenic mutations in either MAPT (n=12), GRN (n=9) or C9orf72 (n=15). Group comparisons were performed between clinical and genetic groups and controls using a linear regression model with bias-corrected bootstrap CIs. Correlative analyses were performed to investigate associations with measures of disease severity and progression. RESULTS: Higher plasma tau concentrations were seen in bvFTD (mean 1.96 (SD 1.07) pg/mL) and PPA (2.65 (2.15) pg/mL) compared with controls (1.67 (0.50) pg/mL). Investigating the PPA group further showed significantly higher levels compared with controls in each of the PPA subtypes (non-fluent, semantic and logopenic variants, as well as a fourth group not meeting criteria for one of the three main variants). In the genetic groups, only the MAPT group had significantly increased concentrations (2.62 (1.39) pg/mL) compared with controls. No significant correlations were seen with cross-sectional or longitudinal brain volumes, serum neurofilament light chain concentrations or disease duration. CONCLUSION: Plasma tau levels are increased in FTD in all clinical groups, but in the genetic subtypes only in MAPT mutations, the group of patients who definitively have tau pathology at postmortem. Future studies will be required in pathologically confirmed cohorts to investigate this association further, and whether plasma tau will be helpful in differentiating patients with FTD with tau from those with other pathologies.


Subject(s)
Brain/diagnostic imaging , Frontotemporal Dementia/blood , tau Proteins/blood , Aged , Case-Control Studies , Female , Frontotemporal Dementia/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging
8.
Neurology ; 90(12): e1066-e1076, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29453244

ABSTRACT

OBJECTIVE: To identify the white matter correlates of apathy and impulsivity in the major syndromes associated with frontotemporal lobar degeneration, using diffusion-weighted imaging and data from the PiPPIN (Pick's Disease and Progressive Supranuclear Palsy: Prevalence and Incidence) study. We included behavioral and language variants of frontotemporal dementia, corticobasal syndrome, and progressive supranuclear palsy. METHODS: Seventy patients and 30 controls underwent diffusion tensor imaging at 3-tesla after detailed assessment of apathy and impulsivity. We used tract-based spatial statistics of fractional anisotropy and mean diffusivity, correlating with 8 orthogonal dimensions of apathy and impulsivity derived from a principal component analysis of neuropsychological, behavioral, and questionnaire measures. RESULTS: Three components were associated with significant white matter tract abnormalities. Carer-rated change in everyday skills, self-care, and motivation correlated with widespread changes in dorsal frontoparietal and corticospinal tracts, while carer observations of impulsive-apathetic and challenging behaviors revealed disruption in ventral frontotemporal tracts. Objective neuropsychological tests of cognitive control, reflection impulsivity, and reward responsiveness were associated with focal changes in the right frontal lobe and presupplementary motor area. These changes were observed across clinical diagnostic groups, and were not restricted to the disorders for which diagnostic criteria include apathy and impulsivity. CONCLUSION: The current study provides evidence of distinct structural network changes in white matter associated with different neurobehavioral components of apathy and impulsivity across the diverse spectrum of syndromes and pathologies associated with frontotemporal lobar degeneration.


Subject(s)
Apathy , Frontotemporal Lobar Degeneration/diagnostic imaging , Frontotemporal Lobar Degeneration/psychology , Impulsive Behavior , White Matter/diagnostic imaging , Aged , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Supranuclear Palsy, Progressive
9.
Sci Rep ; 8(1): 1030, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348485

ABSTRACT

Automatic motor mimicry is essential to the normal processing of perceived emotion, and disrupted automatic imitation might underpin socio-emotional deficits in neurodegenerative diseases, particularly the frontotemporal dementias. However, the pathophysiology of emotional reactivity in these diseases has not been elucidated. We studied facial electromyographic responses during emotion identification on viewing videos of dynamic facial expressions in 37 patients representing canonical frontotemporal dementia syndromes versus 21 healthy older individuals. Neuroanatomical associations of emotional expression identification accuracy and facial muscle reactivity were assessed using voxel-based morphometry. Controls showed characteristic profiles of automatic imitation, and this response predicted correct emotion identification. Automatic imitation was reduced in the behavioural and right temporal variant groups, while the normal coupling between imitation and correct identification was lost in the right temporal and semantic variant groups. Grey matter correlates of emotion identification and imitation were delineated within a distributed network including primary visual and motor, prefrontal, insular, anterior temporal and temporo-occipital junctional areas, with common involvement of supplementary motor cortex across syndromes. Impaired emotional mimesis may be a core mechanism of disordered emotional signal understanding and reactivity in frontotemporal dementia, with implications for the development of novel physiological biomarkers of socio-emotional dysfunction in these diseases.


Subject(s)
Emotions , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/psychology , Psychomotor Performance , Aged , Facial Expression , Female , Frontotemporal Dementia/diagnosis , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging/methods
10.
Neurobiol Aging ; 62: 191-196, 2018 02.
Article in English | MEDLINE | ID: mdl-29172163

ABSTRACT

Frontotemporal dementia (FTD) is a highly heritable condition with multiple genetic causes. In this study, similarities and differences of gray matter (GM) atrophy patterns were assessed among 3 common forms of genetic FTD (mutations in C9orf72, GRN, and MAPT). Participants from the Genetic FTD Initiative (GENFI) cohort with a suitable volumetric T1 magnetic resonance imaging scan were included (319): 144 nonmutation carriers, 128 presymptomatic mutation carriers, and 47 clinically affected mutation carriers. Cross-sectional differences in GM volume between noncarriers and carriers were analyzed using voxel-based morphometry. In the affected carriers, each genetic mutation group exhibited unique areas of atrophy but also a shared network involving the insula, orbitofrontal lobe, and anterior cingulate. Presymptomatic GM atrophy was observed particularly in the thalamus and cerebellum in the C9orf72 group, the anterior and medial temporal lobes in MAPT, and the posterior frontal and parietal lobes as well as striatum in GRN. Across all presymptomatic carriers, there were significant decreases in the anterior insula. These results suggest that although there are important differences in atrophy patterns for each group (which can be seen presymptomatically), there are also similarities (a fronto-insula-anterior cingulate network) that help explain the clinical commonalities of the disease.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Gray Matter/pathology , Adult , Aged , Atrophy , C9orf72 Protein/genetics , Cohort Studies , Female , Gray Matter/diagnostic imaging , Heterozygote , Humans , Intercellular Signaling Peptides and Proteins/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Organ Size , Progranulins , tau Proteins/genetics
11.
Front Neurol ; 8: 610, 2017.
Article in English | MEDLINE | ID: mdl-29201014

ABSTRACT

BACKGROUND: Interoception (the perception of internal bodily sensations) is strongly linked to emotional experience and sensitivity to the emotions of others in healthy subjects. Interoceptive impairment may contribute to the profound socioemotional symptoms that characterize frontotemporal dementia (FTD) syndromes, but remains poorly defined. METHODS: Patients representing all major FTD syndromes and healthy age-matched controls performed a heartbeat counting task as a measure of interoceptive accuracy. In addition, patients had volumetric MRI for voxel-based morphometric analysis, and their caregivers completed a questionnaire assessing patients' daily-life sensitivity to the emotions of others. RESULTS: Interoceptive accuracy was impaired in patients with semantic variant primary progressive aphasia relative to healthy age-matched individuals, but not in behavioral variant frontotemporal dementia and nonfluent variant primary progressive aphasia. Impaired interoceptive accuracy correlated with reduced daily-life emotional sensitivity across the patient cohort, and with atrophy of right insula, cingulate, and amygdala on voxel-based morphometry in the impaired semantic variant group, delineating a network previously shown to support interoceptive processing in the healthy brain. CONCLUSION: Interoception is a promising novel paradigm for defining mechanisms of reduced emotional reactivity, empathy, and self-awareness in neurodegenerative syndromes and may yield objective measures for these complex symptoms.

12.
Neuropsychologia ; 104: 144-156, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28811257

ABSTRACT

Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes.


Subject(s)
Auditory Perception/physiology , Conflict, Psychological , Emotions/physiology , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/psychology , Semantics , Acoustic Stimulation , Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/physiopathology , Female , Frontotemporal Dementia/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Statistics, Nonparametric
13.
Brain ; 140(6): 1792-1807, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28486594

ABSTRACT

Apathy and impulsivity are common and disabling consequences of frontotemporal lobar degeneration. They cause substantial carer distress, but their aetiology remains elusive. There are critical limitations to previous studies in this area including (i) the assessment of either apathy or impulsivity alone, despite their frequent co-existence; (ii) the assessment of behavioural changes within single diagnostic groups; and (iii) the use of limited sets of tasks or questions that relate to just one aspect of these multifactorial constructs. We proposed an alternative, dimensional approach that spans behavioural and language variants of frontotemporal dementia, progressive supranuclear palsy and corticobasal syndrome. This accommodates the commonalities of apathy and impulsivity across disorders and reveals their cognitive and anatomical bases. The ability to measure the components of apathy and impulsivity and their associated neural correlates across diagnostic groups would provide better novel targets for pharmacological manipulations, and facilitate new treatment strategies and strengthen translational models. We therefore sought to determine the neurocognitive components of apathy and impulsivity in frontotemporal lobar degeneration syndromes. The frequency and characteristics of apathy and impulsivity were determined by neuropsychological and behavioural assessments in 149 patients and 50 controls from the PIck's disease and Progressive supranuclear palsy Prevalence and INcidence study (PiPPIN). We derived dimensions of apathy and impulsivity using principal component analysis and employed these in volumetric analyses of grey and white matter in a subset of 70 patients (progressive supranuclear palsy, n = 22; corticobasal syndrome, n = 13; behavioural variant, n = 14; primary progressive aphasias, n = 21) and 27 control subjects. Apathy and impulsivity were present across diagnostic groups, despite being criteria for behavioural variant frontotemporal dementia alone. Measures of apathy and impulsivity frequently loaded onto the same components reflecting their overlapping relationship. However, measures from objective tasks, patient-rated questionnaires and carer-rated questionnaires loaded onto separate components and revealed distinct neurobiology. Corticospinal tracts correlated with patients' self-ratings. In contrast, carer ratings correlated with atrophy in established networks for goal-directed behaviour, social cognition, motor control and vegetative functions, including frontostriatal circuits, orbital and temporal polar cortex, and the brainstem. Components reflecting response inhibition deficits correlated with focal frontal cortical atrophy. The dimensional approach to complex behavioural changes arising from frontotemporal lobar degeneration provides new insights into apathy and impulsivity, and the need for a joint therapeutic strategy against them. The separation of objective tests from subjective questionnaires, and patient from carer ratings, has important implications for clinical trial design.awx101media15448041163001.


Subject(s)
Apathy/physiology , Frontotemporal Lobar Degeneration/diagnostic imaging , Frontotemporal Lobar Degeneration/physiopathology , Gray Matter/diagnostic imaging , Impulsive Behavior/physiology , White Matter/diagnostic imaging , Aged , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/physiopathology , Female , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pick Disease of the Brain/diagnostic imaging , Pick Disease of the Brain/physiopathology , Principal Component Analysis , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/physiopathology , Syndrome
14.
Neuroimage Clin ; 15: 171-180, 2017.
Article in English | MEDLINE | ID: mdl-28529873

ABSTRACT

Genetic frontotemporal dementia is most commonly caused by mutations in the progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72) genes. Previous small studies have reported the presence of cerebral white matter hyperintensities (WMH) in genetic FTD but this has not been systematically studied across the different mutations. In this study WMH were assessed in 180 participants from the Genetic FTD Initiative (GENFI) with 3D T1- and T2-weighed magnetic resonance images: 43 symptomatic (7 GRN, 13 MAPT and 23 C9orf72), 61 presymptomatic mutation carriers (25 GRN, 8 MAPT and 28 C9orf72) and 76 mutation negative non-carrier family members. An automatic detection and quantification algorithm was developed for determining load, location and appearance of WMH. Significant differences were seen only in the symptomatic GRN group compared with the other groups with no differences in the MAPT or C9orf72 groups: increased global load of WMH was seen, with WMH located in the frontal and occipital lobes more so than the parietal lobes, and nearer to the ventricles rather than juxtacortical. Although no differences were seen in the presymptomatic group as a whole, in the GRN cohort only there was an association of increased WMH volume with expected years from symptom onset. The appearance of the WMH was also different in the GRN group compared with the other groups, with the lesions in the GRN group being more similar to each other. The presence of WMH in those with progranulin deficiency may be related to the known role of progranulin in neuroinflammation, although other roles are also proposed including an effect on blood-brain barrier permeability and the cerebral vasculature. Future studies will be useful to investigate the longitudinal evolution of WMH and their potential use as a biomarker as well as post-mortem studies investigating the histopathological nature of the lesions.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Intercellular Signaling Peptides and Proteins/genetics , White Matter/pathology , Adult , Aged , C9orf72 Protein/genetics , Cohort Studies , Female , Frontotemporal Dementia/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Progranulins , White Matter/diagnostic imaging , tau Proteins/genetics
15.
Alzheimers Dement (Amst) ; 6: 75-81, 2017.
Article in English | MEDLINE | ID: mdl-28229125

ABSTRACT

INTRODUCTION: Mutations in the TANK-binding kinase 1 (TBK1) gene have recently been shown to cause frontotemporal dementia (FTD). However, the phenotype of TBK1-associated FTD is currently unclear. METHODS: We performed a single case longitudinal study of a patient who was subsequently found to have a novel A705fs mutation in the TBK1 gene. He was assessed annually over a 7-year period with a series of clinical, cognitive, and magnetic resonance imaging assessments. His brain underwent pathological examination at postmortem. RESULTS: The patient presented at the age of 64 years with an 18-month history of personality change including increased rigidity and obsessiveness, apathy, loss of empathy, and development of a sweet tooth. His mother had developed progressive behavioral and cognitive impairment from the age of 57 years. Neuropsychometry revealed intact cognition at first assessment. Magnetic resonance imaging showed focal right temporal lobe atrophy. Over the next few years his behavioral problems progressed and he developed cognitive impairment, initially with anomia and prosopagnosia. Neurological examination remained normal throughout without any features of motor neurone disease. He died at the age of 72 years and postmortem showed TDP-43 type A pathology but with an unusual novel feature of numerous TAR DNA-binding protein 43 (TDP-43)-positive neuritic structures at the cerebral cortex/subcortical white matter junction. There was also associated argyrophilic grain disease not previously reported in other TBK1 mutation cases. DISCUSSION: TBK1-associated FTD can be associated with right temporal variant FTD with progressive behavioral change and relatively intact cognition initially. The case further highlights the benefits of next-generation sequencing technologies in the diagnosis of neurodegenerative disorders and the importance of detailed neuropathologic analysis.

16.
Ann Clin Transl Neurol ; 3(8): 623-36, 2016 08.
Article in English | MEDLINE | ID: mdl-27606344

ABSTRACT

OBJECTIVE: To evaluate cerebrospinal fluid (CSF) and serum neurofilament light chain (NfL) levels in genetic frontotemporal dementia (FTD) as a potential biomarker in the presymptomatic stage and during the conversion into the symptomatic stage. Additionally, to correlate NfL levels to clinical and neuroimaging parameters. METHODS: In this multicenter case-control study, we investigated CSF NfL in 174 subjects (48 controls, 40 presymptomatic carriers and 86 patients with microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading frame 72 (C9orf72) mutations), and serum NfL in 118 subjects (39 controls, 44 presymptomatic carriers, 35 patients). In 55 subjects both CSF and serum was determined. In two subjects CSF was available before and after symptom onset (converters). Additionally, NfL levels were correlated with clinical parameters, survival, and regional brain atrophy. RESULTS: CSF NfL levels in patients (median 6762 pg/mL, interquartile range 3186-9309 pg/mL) were strongly elevated compared with presymptomatic carriers (804 pg/mL, 627-1173 pg/mL, P < 0.001), resulting in a good diagnostic performance to discriminate both groups. Serum NfL correlated highly with CSF NfL (r s = 0.87, P < 0.001) and was similarly elevated in patients. Longitudinal samples in the converters showed a three- to fourfold increase in CSF NfL after disease onset. Additionally, NfL levels in patients correlated with disease severity, brain atrophy, annualized brain atrophy rate and survival. INTERPRETATION: NfL in both serum and CSF has the potential to serve as a biomarker for clinical disease onset and has a prognostic value in genetic FTD.

17.
Neurology ; 87(13): 1329-36, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27581216

ABSTRACT

OBJECTIVE: To investigate serum neurofilament light chain (NfL) concentrations in frontotemporal dementia (FTD) and to see whether they are associated with the severity of disease. METHODS: Serum samples were collected from 74 participants (34 with behavioral variant FTD [bvFTD], 3 with FTD and motor neuron disease and 37 with primary progressive aphasia [PPA]) and 28 healthy controls. Twenty-four of the FTD participants carried a pathogenic mutation in C9orf72 (9), microtubule-associated protein tau (MAPT; 11), or progranulin (GRN; 4). Serum NfL concentrations were determined with the NF-Light kit transferred onto the single-molecule array platform and compared between FTD and healthy controls and between the FTD clinical and genetic subtypes. We also assessed the relationship between NfL concentrations and measures of cognition and brain volume. RESULTS: Serum NfL concentrations were higher in patients with FTD overall (mean 77.9 pg/mL [SD 51.3 pg/mL]) than controls (19.6 pg/mL [SD 8.2 pg/mL]; p < 0.001). Concentrations were also significantly higher in bvFTD (57.8 pg/mL [SD 33.1 pg/mL]) and both the semantic and nonfluent variants of PPA (95.9 and 82.5 pg/mL [SD 33.0 and 33.8 pg/mL], respectively) compared with controls and in semantic variant PPA compared with logopenic variant PPA. Concentrations were significantly higher than controls in both the C9orf72 and MAPT subgroups (79.2 and 40.5 pg/mL [SD 48.2 and 20.9 pg/mL], respectively) with a trend to a higher level in the GRN subgroup (138.5 pg/mL [SD 103.3 pg/mL). However, there was variability within all groups. Serum concentrations correlated particularly with frontal lobe atrophy rate (r = 0.53, p = 0.003). CONCLUSIONS: Increased serum NfL concentrations are seen in FTD but show wide variability within each clinical and genetic group. Higher concentrations may reflect the intensity of the disease in FTD and are associated with more rapid atrophy of the frontal lobes.


Subject(s)
Frontotemporal Dementia/blood , Neurofilament Proteins/blood , Aged , Aphasia, Primary Progressive/blood , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/genetics , Atrophy , Biomarkers/blood , C9orf72 Protein , Disease Progression , Female , Follow-Up Studies , Frontal Lobe/diagnostic imaging , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Motor Neuron Disease/blood , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/genetics , Progranulins , Proteins/genetics , Psychometrics , Severity of Illness Index , tau Proteins/genetics
18.
Neurology ; 86(18): 1736-43, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27037234

ABSTRACT

OBJECTIVES: To estimate the lifetime risk, prevalence, incidence, and mortality of the principal clinical syndromes associated with frontotemporal lobar degeneration (FTLD) using revised diagnostic criteria and including intermediate clinical phenotypes. METHODS: Multisource referral over 2 years to identify all diagnosed or suspected cases of frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), or corticobasal syndrome (CBS) in 2 UK counties (population 1.69 million). Diagnostic confirmation used current consensus diagnostic criteria after interview and reexamination. Results were adjusted to the 2013 European standard population. RESULTS: The prevalence of FTD, PSP, and CBS was 10.8/100,000. The incidence and mortality were very similar, at 1.61/100,000 and 1.56/100,000 person-years, respectively. The estimated lifetime risk is 1 in 742. Survival following diagnosis varied widely: from PSP 2.9 years to semantic variant FTD 9.1 years. Age-adjusted prevalence peaked between 65 and 69 years at 42.6/100,000: the age-adjusted prevalence for persons older than 65 years is double the prevalence for those between 40 and 64 years. Fifteen percent of those screened had a relevant genetic mutation. CONCLUSIONS: Key features of this study include the revised diagnostic criteria with improved specificity and sensitivity, an unrestricted age range, and simultaneous assessment of multiple FTLD syndromes. The prevalence of FTD, PSP, and CBS increases beyond 65 years, with frequent genetic causes. The time from onset to diagnosis and from diagnosis to death varies widely among syndromes, emphasizing the challenge and importance of accurate and timely diagnosis. A high index of suspicion for FTLD syndromes is required by clinicians, even for older patients.


Subject(s)
Aphasia/epidemiology , Frontotemporal Lobar Degeneration/epidemiology , Supranuclear Palsy, Progressive/epidemiology , Adult , Age Factors , Aged , Aphasia/diagnosis , Aphasia/physiopathology , Female , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/physiopathology , Humans , Incidence , Male , Middle Aged , Phenotype , Prevalence , Risk , Supranuclear Palsy, Progressive/diagnosis , Supranuclear Palsy, Progressive/physiopathology , Survival Analysis , Syndrome , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...