Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 17(6): e0268401, 2022.
Article in English | MEDLINE | ID: mdl-35709137

ABSTRACT

The study of artifacts is fundamental to archaeological research. The features of individual artifacts are recorded, analyzed, and compared within and between contextual assemblages. Here we present and make available for academic-use Artifact3-D, a new software package comprised of a suite of analysis and documentation procedures for archaeological artifacts. We introduce it here, alongside real archaeological case studies to demonstrate its utility. Artifact3-D equips its users with a range of computational functions for accurate measurements, including orthogonal distances, surface area, volume, CoM, edge angles, asymmetry, and scar attributes. Metrics and figures for each of these measurements are easily exported for the purposes of further analysis and illustration. We test these functions on a range of real archaeological case studies pertaining to tool functionality, technological organization, manufacturing traditions, knapping techniques, and knapper skill. Here we focus on lithic artifacts, but the Artifact3-D software can be used on any artifact type to address the needs of modern archaeology. Computational methods are increasingly becoming entwined in the excavation, documentation, analysis, database creation, and publication of archaeological research. Artifact3-D offers functions to address every stage of this workflow. It equips the user with the requisite toolkit for archaeological research that is accurate, objective, repeatable and efficient. This program will help archaeological research deal with the abundant material found during excavations and will open new horizons in research trajectories.


Subject(s)
Archaeology , Software , Archaeology/methods , Artifacts , Documentation , Technology
2.
J Vib Acoust ; 1402018.
Article in English | MEDLINE | ID: mdl-31080325

ABSTRACT

A large array of elastically coupled micro cantilevers of variable length is studied experimentally and numerically. Full-scale finite element modal analysis is implemented to determine the spectral behavior of the array and to extract a global coupling matrix. A compact reduced order model is used for numerical investigation of the array's dynamic response. Our model results show that at a given excitation frequency within a propagation band, only a finite number of beams respond. Spectral characteristics of individual cantilevers, inertially excited by an external piezoelectric actuator, were measured in vacuum using laser interferometry. The theoretical and experimental results collectively show that the resonant peaks corresponding to individual beams are clearly separated when operating in vacuum at the 3rd harmonic. Distinct resonant peak separation, coupled with the spatially-confined modal response, make higher harmonic operation of tailored, variable-length cantilever arrays well suited for a variety of resonant based sensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL