Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 26: 119-131, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35795780

ABSTRACT

Severe congenital neutropenia (SCN) is a life-threatening marrow failure disorder, usually caused by heterozygous mutations in ELANE. Potential genetic treatment strategies include biallelic knockout or gene correction via homology-directed repair (HDR). Such strategies, however, involve the potential loss of the essential function of the normal allele product or limited coverage of diverse monogenic mutations within the patient population, respectively. As an alternative, we have developed a novel CRISPR-based monoallelic knockout strategy that precisely targets the heterozygous sites of single-nucleotide polymorphisms (SNPs) associated with most ELANE mutated alleles. In vitro studies demonstrate that patients' unedited hematopoietic CD34+ cells have significant abnormalities in differentiation and maturation, consistent with the hematopoietic defect in SCN patients. Selective knockout of the mutant ELANE allele alleviated these cellular abnormalities and resulted in about 50%-70% increase in normally functioning neutrophils (p < 0.0001). Genomic analysis confirmed that ELANE knockout was specific to the mutant allele and involved no off-targets. These results demonstrate the therapeutic potential of selective allele editing that may be applicable to SCN and other autosomal dominant disorders.

2.
PLoS One ; 15(5): e0233044, 2020.
Article in English | MEDLINE | ID: mdl-32453801

ABSTRACT

Mice deficient in the transcription factor Runx3 develop a multitude of immune system defects, including early onset colitis. This paper demonstrates that Runx3 is expressed in colonic mononuclear phagocytes (MNP), including resident macrophages (RM) and dendritic cell subsets (cDC2). Runx3 deletion in MNP causes early onset colitis due to their impaired maturation. Mechanistically, the resulting MNP subset imbalance leads to up-regulation of pro-inflammatory genes as occurs in IL10R-deficient RM. In addition, RM and cDC2 display a marked decrease in expression of anti-inflammatory/TGF ß-regulated genes and ß-catenin signaling associated genes, respectively. MNP transcriptome and ChIP-seq data analysis suggest that a significant fraction of genes affected by Runx3 loss are direct Runx3 targets. Collectively, Runx3 imposes intestinal immune tolerance by regulating maturation of colonic anti-inflammatory MNP, befitting the identification of RUNX3 as a genome-wide associated risk gene for various immune-related diseases in humans, including gastrointestinal tract diseases such as Crohn's disease and celiac.


Subject(s)
Colitis/immunology , Colon/immunology , Core Binding Factor Alpha 3 Subunit/genetics , Mononuclear Phagocyte System/immunology , Animals , Cell Differentiation , Colitis/genetics , Disease Models, Animal , Humans , Mice , Receptors, Interleukin-10/genetics , Signal Transduction , Transforming Growth Factor beta/metabolism , Up-Regulation , beta Catenin/metabolism
3.
J Immunol ; 200(6): 2025-2037, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29431694

ABSTRACT

The B7-like protein family members play critical immunomodulatory roles and constitute attractive targets for the development of novel therapies for human diseases. We identified Ig-like domain-containing receptor (ILDR)2 as a novel B7-like protein with robust T cell inhibitory activity, expressed in immune cells and in immune-privileged and inflamed tissues. A fusion protein, consisting of ILDR2 extracellular domain with an Fc fragment, that binds to a putative counterpart on activated T cells showed a beneficial effect in the collagen-induced arthritis model and abrogated the production of proinflammatory cytokines and chemokines in autologous synovial-like cocultures of macrophages and cytokine-stimulated T cells. Collectively, these findings point to ILDR2 as a novel negative regulator for T cells, with potential roles in the development of immune-related diseases, including autoimmunity and cancer.


Subject(s)
B7 Antigens/immunology , Membrane Proteins/immunology , T-Lymphocytes/immunology , Animals , Cells, Cultured , Cytokines/immunology , Humans , Immunoglobulin Domains/immunology , Immunoglobulin Fc Fragments/immunology , Lymphocyte Activation/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C
4.
Dev Biol ; 276(1): 111-23, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15531368

ABSTRACT

Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Fungal , Meiosis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Amino Acid Sequence , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genes, Reporter , Gonads/metabolism , Immunohistochemistry , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plasmids , Pregnancy , Promoter Regions, Genetic , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Spermatocytes/metabolism , Spermatogonia/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...