Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 1034648, 2022.
Article in English | MEDLINE | ID: mdl-36389671

ABSTRACT

Colitis is characterized by an exacerbated intestinal immune response, but the genetic and other mechanisms regulating immune activation remain incompletely understood. In order to identify new pathways leading to colitis, we sought to identify genes with increased expression in the colons of patients that also are near loci identified by genome wide association studies (GWAS) associated with IBD risk. One such SNP, rs9557195 was of particular interest because it is within an intron of G-protein-coupled receptor (GPR) 183, known to be important for lymphocyte migration. Furthermore, this SNP is in close proximity to the gene encoding another G-protein coupled receptor, GPR18. Analyzing publicly available datasets, we found transcripts of GPR183 and GPR18 to be increased in colon biopsies from ulcerative colitis and Crohn's disease patients, and GPR183 was even more increased in patients resistant to TNF treatment. Expression of both genes also was increased in mouse models of colitis. Therefore, our aim was to understand if increased expression of these GPRs in the intestine is related to disease severity in colitis models. Here we investigated the role of these receptors in the T cell transfer model and the dextran sulfate sodium model. In the T cell transfer model, GPR183 expression on donor T cells, as well as on other cell types in the Rag-/- recipients, was not essential for severe colitis induction. Furthermore, deficiency in Rag-/- mice for the enzyme that synthesizes a cholesterol metabolite that is a major ligand for GPR183 also did not affect disease. Similarly, lack of GPR18 expression in T cells or other cell types did not affect colitis pathogenesis in the T cell transfer or in the dextran sulfate sodium model. Therefore, despite increased expression of transcripts for these genes in the intestine during inflammation in humans and mice, they are not required for disease severity in mouse models of colitis induced by chemical injury or T cell cytokines, perhaps due to redundancy in mechanisms important for homing and survival of lymphocytes to the inflamed intestine.


Subject(s)
Colitis , Genome-Wide Association Study , Mice , Humans , Animals , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/genetics , Disease Models, Animal , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , CD4-Positive T-Lymphocytes/metabolism
2.
Nature ; 605(7911): 741-746, 2022 05.
Article in English | MEDLINE | ID: mdl-35508656

ABSTRACT

Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Adenosine/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Head and Neck Neoplasms/drug therapy , Humans , Immunotherapy , Mice , Phosphatidylinositol 3-Kinases , Quinolines/therapeutic use , T-Lymphocytes, Regulatory
3.
Mucosal Immunol ; 14(3): 679-690, 2021 05.
Article in English | MEDLINE | ID: mdl-33568785

ABSTRACT

Inflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTßR), which binds LIGHT, also led to aggravated colitis pathogenesis. Here, we aimed to determine the cell type(s) requiring LTßR and the mechanism critical for exacerbation of colitis. Specific deletion of LTßR in neutrophils (LTßRΔN), but not in several other cell types, was sufficient to induce aggravated colitis and colonic neutrophil accumulation. Mechanistically, RNA-Seq analysis revealed LIGHT-induced suppression of cellular metabolism, and mitochondrial function, that was dependent on LTßR. Functional studies confirmed increased mitochondrial mass and activity, associated with excessive mitochondrial ROS production and elevated glycolysis at steady-state and during colitis. Targeting these metabolic changes rescued exacerbated disease severity. Our results demonstrate that LIGHT signals to LTßR on neutrophils to suppress metabolic activation and thereby prevents exacerbated immune pathogenesis during colitis.


Subject(s)
Colitis/immunology , Inflammatory Bowel Diseases/immunology , Lymphotoxin beta Receptor/metabolism , Mitochondria/metabolism , Neutrophils/metabolism , Activation, Metabolic , Animals , Dextran Sulfate , Disease Models, Animal , Disease Progression , Humans , Lymphotoxin beta Receptor/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
4.
Plant Biotechnol J ; 15(2): 197-206, 2017 02.
Article in English | MEDLINE | ID: mdl-27421111

ABSTRACT

Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco-engineering facilitate the elimination of nonmammalian-type glycosylation and introduction of missing pathways for customized N-glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N-glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N-glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, ß-hexosaminidases (HEXOs) that account for the formation of paucimannosidic N-glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO-deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3-fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N-glycans on plant-produced human α1-antitrypsin.


Subject(s)
Nicotiana/metabolism , Polysaccharides/biosynthesis , beta-N-Acetylhexosaminidases/antagonists & inhibitors , Arabidopsis/genetics , Arabidopsis/metabolism , Base Sequence , Cell Membrane/metabolism , Genes, Plant , Glycosylation , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Polysaccharides/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Nicotiana/enzymology , Nicotiana/genetics , Vacuoles/metabolism
5.
Bioengineered ; 7(6): 484-489, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27333379

ABSTRACT

IgA nephropathy (IgAN) is a common autoimmune disease that is characterized by formation and deposition of IgA1-containing immune complexes frequently leading to end-stage kidney disease. The IgA1 in these immune complexes carries aberrantly glycosylated O-glycans. In circulating IgA1 these galactose-deficient mucin-type O-glycans are bound by autoantibodies and thus, contribute to immune complex formation and pathogenesis. Even though the disease is associated with the overproduction of aberrant O-glycans on IgA1, specific structure-function-studies of mucin-type O-glycans are limited. Compared to other expression hosts, plants offer the opportunity for de novo synthesis of O-glycans on recombinant glycoproteins as they are lacking the mammalian O-glycosylation pathway. Recently, we demonstrated that Nicotiana benthamiana are suitable for the generation of distinct O-glycans on recombinant IgA1. Here, we expand our engineering repertoire by in planta generation of galactose-deficient and α2,6-sialylated O-glycans which are the prevailing glycans detected on IgA1 from patients with IgAN.


Subject(s)
Genetic Engineering/methods , Immunoglobulin A/biosynthesis , Mucins/biosynthesis , Polysaccharides/biosynthesis , Recombinant Proteins/biosynthesis , Antigen-Antibody Complex/biosynthesis , Antigen-Antibody Complex/immunology , Galactose/metabolism , Gene Expression Regulation , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/therapy , Glycosylation , Humans , Nicotiana/genetics , Nicotiana/metabolism
6.
Front Plant Sci ; 7: 18, 2016.
Article in English | MEDLINE | ID: mdl-26858738

ABSTRACT

The production of therapeutic antibodies to combat pathogens and treat diseases, such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG), less effort has been undertaken to express immunoglobulin A (IgA), which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumor activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered ΔXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that ΔXT/FT N. benthamiana plants can be engineered toward the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

7.
Expert Opin Biol Ther ; 15(10): 1501-16, 2015.
Article in English | MEDLINE | ID: mdl-26175280

ABSTRACT

INTRODUCTION: Glycans are increasingly important in the development of new biopharmaceuticals with optimized efficacy, half-life, and antigenicity. Current expression platforms for recombinant glycoprotein therapeutics typically do not produce homogeneous glycans and frequently display non-human glycans which may cause unwanted side effects. To circumvent these issues, glyco-engineering has been applied to different expression systems including mammalian cells, insect cells, yeast, and plants. AREAS COVERED: This review summarizes recent developments in glyco-engineering focusing mainly on in vivo expression systems for recombinant proteins. The highlighted strategies aim at producing glycoproteins with homogeneous N- and O-linked glycans of defined composition. EXPERT OPINION: Glyco-engineering of expression platforms is increasingly recognized as an important strategy to improve biopharmaceuticals. A better understanding and control of the factors leading to glycan heterogeneity will allow simplified production of recombinant glycoprotein therapeutics with less variation in terms of glycosylation. Further technological advances will have a major impact on manufacturing processes and may provide a completely new class of glycoprotein therapeutics with customized functions.


Subject(s)
Glycoproteins/metabolism , Polysaccharides/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacokinetics , Glycoproteins/genetics , Glycoproteins/pharmacokinetics , Glycosylation , Half-Life , Humans , Protein Engineering , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics
8.
Methods Mol Biol ; 1321: 249-67, 2015.
Article in English | MEDLINE | ID: mdl-26082228

ABSTRACT

Plants are attractive expression hosts for the production of recombinant glycoprotein therapeutics. The quality and efficiency of these biopharmaceuticals are very often influenced by the glycosylation profile. Consequently, approaches are needed that enable the production of recombinant glycoproteins with customized and homogenous N- and O-glycan structures. Here, we describe convenient tools that allow targeting and retention of glycan-modifying enzymes in the early secretory pathway of plants. These protocols can be used to fine-tune the subcellular localization of glycosyltransferases and glycosidases in plants and consequently to increase the homogeneity of glycosylation on recombinant glycoproteins.


Subject(s)
Glycoproteins/metabolism , Polysaccharides/metabolism , Recombinant Proteins/metabolism , Glycoside Hydrolases/metabolism , Glycosylation , Glycosyltransferases/metabolism , Plants, Genetically Modified/metabolism
9.
Plant J ; 80(5): 809-22, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25230686

ABSTRACT

Golgi-resident type-II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment-specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N-acetylglucosaminyltransferase I (GnTI) for its cis/medial-Golgi localization and for protein-protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well-known trans-Golgi enzyme α2,6-sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co-localization analysis and N-glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial-Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub-Golgi localization was not able to complement the GnTI-dependent glycosylation defect. Our results suggest that sequence-specific features in the transmembrane domain of GnTI account for its steady-state distribution in the cis/medial-Golgi in plants, which is a prerequisite for efficient N-glycan processing in vivo.


Subject(s)
Golgi Apparatus/metabolism , N-Acetylglucosaminyltransferases/metabolism , Nicotiana/metabolism , Plant Proteins/metabolism , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Cytoplasm/metabolism , Genetic Complementation Test , Glycosylation , N-Acetylglucosaminyltransferases/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Interaction Maps , Protein Structure, Tertiary , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism , Nicotiana/cytology , beta-D-Galactoside alpha 2-6-Sialyltransferase
10.
Biochem J ; 464(3): 401-11, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25251695

ABSTRACT

N-glycosylation of proteins plays an important role in the determination of the fate of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Specific oligosaccharide structures recruit molecular chaperones that promote folding or mannose-binding lectins that assist in the clearance of improperly-folded glycoproteins by delivery to ER-associated degradation (ERAD). In plants, the mechanisms and factors that recognize non-native proteins and sort them to ERAD are poorly understood. In the present study, we provide evidence that a misfolded variant of the STRUBBELIG (SUB) extracellular domain (SUBEX-C57Y) is degraded in a glycan-dependent manner in plants. SUBEX-C57Y is an ER-retained glycoprotein with three N-glycans that is stabilized in the presence of kifunensine, a potent inhibitor of α-mannosidases. Stable expression in Arabidopsis thaliana knockout mutants revealed that SUBEX-C57Y degradation is dependent on the ER lectin OS9 and its associated ERAD factor SEL1L. SUBEX-C57Y was also stabilized in plants lacking the α-mannosidases MNS4 and MNS5 that generate a terminal α1,6-linked mannose on the C-branch of N-glycans. Notably, the glycan signal for degradation is not constrained to a specific position within SUBEX-C57Y. Structural analysis revealed that SUBEX-C57Y harbours considerable amounts of Glc1Man7GlcNAc2 N-glycans suggesting that the ER-quality control processes involving calnexin/calreticulin (CNX/CRT) and ERAD are tightly interconnected to promote protein folding or disposal by termination of futile folding attempts.


Subject(s)
Arabidopsis Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation , Polysaccharides/metabolism , Protein Folding , Protein Sorting Signals , Receptor Protein-Tyrosine Kinases/metabolism , Alkaloids/pharmacology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Carbohydrate Sequence , Plants, Genetically Modified , Polysaccharides/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Structure, Tertiary , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/genetics
11.
J Agric Food Chem ; 62(3): 780-8, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24369070

ABSTRACT

Grapevine-shoot extracts (GSE), containing trans-resveratrol and resveratrol oligomers, are commercially available as food supplements. Considering the topoisomerase-targeting properties of trans-resveratrol, the question of whether GSE affect these enzymes, thereby potentially causing DNA damage, was addressed. In a decatenation assay, GSE potently suppressed the catalytic activity of topoisomerase IIα (≥5 µg/mL). The resveratrol oligomers ε-viniferin, r2-viniferin, and hopeaphenol, isolated from GSE, were also identified as topoisomerase IIα inhibitors. In the in vivo complexes of enzyme to DNA (ICE) bioassay, neither GSE, r2-viniferin, nor hopeaphenol affected the level of enzyme-DNA intermediates in A431 cells, thus representing catalytic inhibitors rather than topoisomerase poisons. GSE caused moderate DNA strand breaks (≥25 µg/mL) in the comet assay. Taken together, GSE presumably acts as a catalytic inhibitor of topoisomerase II with r2-viniferin and hopeaphenol as potentially contributing constituents. However, the increase of FPG-sensitive sites points to an additional mechanism that may contribute to the DNA-damaging properties of GSE constituents.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Plant Extracts/chemistry , Plant Shoots/chemistry , Stilbenes/chemistry , Vitis/chemistry , Antigens, Neoplasm/metabolism , Biocatalysis/drug effects , Cell Line, Tumor , Comet Assay , DNA Damage/drug effects , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Humans , Plant Extracts/pharmacology , Resveratrol , Stilbenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...