Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
JACC Basic Transl Sci ; 8(10): 1379-1388, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38094686

ABSTRACT

Ligands for the serotonin 2B receptor (5-HT2B) have shown potential to treat pulmonary arterial hypertension in preclinical models but cannot be used in humans because of predicted off-target neurological effects. The aim of this study was to develop novel systemically restricted compounds targeting 5-HT2B. Here, we show that mice treated with VU6047534 had decreased RVSP compared with control treatment in both the prevention and intervention studies using Sugen-hypoxia. VU6047534 is a novel 5-HT2B partial agonist that is peripherally restricted and able to both prevent and treat Sugen-hypoxia-induced pulmonary arterial hypertension. We have synthesized and characterized a structurally novel series of 5-HT2B ligands with high potency and selectivity for the 5-HT2B receptor subtype. Next-generation 5-HT2B ligands with similar characteristics, and predicted to be systemically restricted in humans, are currently advancing to investigational new drug-enabling studies.

2.
Mol Pharmacol ; 104(5): 195-202, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37595966

ABSTRACT

M4 muscarinic receptors are highly expressed in the striatum and cortex, brain regions that are involved in diseases such as Parkinson's disease, schizophrenia, and dystonia. Despite potential therapeutic advantages of specifically targeting the M4 receptor, it has been historically challenging to develop highly selective ligands, resulting in undesired off-target activity at other members of the muscarinic receptor family. Recently, we have reported first-in-class, potent, and selective M4 receptor antagonists. As an extension of that work, we now report the development and characterization of a radiolabeled M4 receptor antagonist, [3H]VU6013720, with high affinity (pKd of 9.5 ± 0.2 at rat M4, 9.7 at mouse M4, and 10 ± 0.1 at human M4 with atropine to define nonspecific binding) and no significant binding at the other muscarinic subtypes. Binding assays using this radioligand in rodent brain tissues demonstrate loss of specific binding in Chrm4 knockout animals. Dissociation kinetics experiments with various muscarinic ligands show differential effects on the dissociation of [3H]VU6013720 from M4 receptors, suggesting a binding site that is overlapping but may be distinct from the orthosteric site. Overall, these results demonstrate that [3H]VU6013720 is the first highly selective antagonist radioligand for the M4 receptor, representing a useful tool for studying the basic biology of M4 as well for the support of M4 receptor-based drug discovery. SIGNIFICANCE STATEMENT: This manuscript describes the development and characterization of a novel muscarinic (M) acetylcholine subtype 4 receptor antagonist radioligand, [3H]VU6013720. This ligand binds to or overlaps with the acetylcholine binding site, providing a highly selective radioligand for the M4 receptor that can be used to quantify M4 protein expression in vivo and probe the selective interactions of acetylcholine with M4 versus the other members of the muscarinic receptor family.


Subject(s)
Acetylcholine , Receptors, Muscarinic , Rats , Humans , Mice , Animals , Acetylcholine/metabolism , Receptors, Muscarinic/metabolism , Receptor, Muscarinic M4/metabolism , Atropine , Ligands , Cholinergic Agents , Muscarinic Antagonists/pharmacology , Muscarinic Antagonists/metabolism , Receptor, Muscarinic M2/metabolism , Radioligand Assay , Receptor, Muscarinic M1/metabolism
3.
Bioorg Med Chem Lett ; 56: 128479, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34838649

ABSTRACT

In this manuscript, we report a series of chiral 6-azaspiro[2.5]octanes and related spirocycles as highly potent and selective antagonists of the muscarinic acetylcholine receptor subtype 4 (mAChR4). Chiral separation and subsequent X-ray crystallographic analysis of early generation analogs revealed the R enantiomer to possess excellent human and rat M4 potency, and further structure-activity relationship (SAR) studies on this chiral scaffold led to the discovery of VU6015241 (compound 19). Compound 19 is characterized by high M4 potency and selectivity across multiple species, excellent aqueous solubility, and moderate brain exposure in rodents after intraperitoneal administration.


Subject(s)
Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M4/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/chemistry , Receptor, Muscarinic M4/metabolism , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 12(8): 1342-1349, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413964

ABSTRACT

Herein, we report the SAR leading to the discovery of VU6028418, a potent M4 mAChR antagonist with high subtype-selectivity and attractive DMPK properties in vitro and in vivo across multiple species. VU6028418 was subsequently evaluated as a preclinical candidate for the treatment of dystonia and other movement disorders. During the characterization of VU6028418, a novel use of deuterium incorporation as a means to modulate CYP inhibition was also discovered.

5.
ACS Pharmacol Transl Sci ; 4(4): 1306-1321, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34423268

ABSTRACT

Nonselective antagonists of muscarinic acetylcholine receptors (mAChRs) that broadly inhibit all five mAChR subtypes provide an efficacious treatment for some movement disorders, including Parkinson's disease and dystonia. Despite their efficacy in these and other central nervous system disorders, antimuscarinic therapy has limited utility due to severe adverse effects that often limit their tolerability by patients. Recent advances in understanding the roles that each mAChR subtype plays in disease pathology suggest that highly selective ligands for individual subtypes may underlie the antiparkinsonian and antidystonic efficacy observed with the use of nonselective antimuscarinic therapeutics. Our recent work has indicated that the M4 muscarinic acetylcholine receptor has several important roles in opposing aberrant neurotransmitter release, intracellular signaling pathways, and brain circuits associated with movement disorders. This raises the possibility that selective antagonists of M4 may recapitulate the efficacy of nonselective antimuscarinic therapeutics and may decrease or eliminate the adverse effects associated with these drugs. However, this has not been directly tested due to lack of selective antagonists of M4. Here, we utilize genetic mAChR knockout animals in combination with nonselective mAChR antagonists to confirm that the M4 receptor activation is required for the locomotor-stimulating and antiparkinsonian efficacy in rodent models. We also report the synthesis, discovery, and characterization of the first-in-class selective M4 antagonists VU6013720, VU6021302, and VU6021625 and confirm that these optimized compounds have antiparkinsonian and antidystonic efficacy in pharmacological and genetic models of movement disorders.

6.
Bioorg Med Chem Lett ; 37: 127838, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33556572

ABSTRACT

A high throughput screen (HTS) identified a novel, but weak (EC50 = 6.2 µM, 97% Glu Max) mGlu4 PAM chemotype based on a 1,4-thiazepane core, VU0544412. Reaction development and chemical optimization delivered a potent mGlu4 PAM VU6022296 (EC50 = 32.8 nM, 108% Glu Max) with good CNS penetration (Kp = 0.45, Kp,uu = 0.70) and enantiopreference. Finally, VU6022296 displayed robust, dose-dependent efficacy in reversing Haloperidol-Induced Catalepsy (HIC), a rodent preclinical Parkinson's disease model.


Subject(s)
Catalepsy/drug therapy , Disease Models, Animal , Drug Discovery , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Catalepsy/chemically induced , Dose-Response Relationship, Drug , Haloperidol , Mice , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Receptors, Metabotropic Glutamate/metabolism , Structure-Activity Relationship
7.
ACS Bio Med Chem Au ; 1(1): 21-30, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-37101980

ABSTRACT

In the course of optimizing an M1 PAM chemotype, introduction of an ether moiety unexpectedly abolished M1 PAM activity while engendering a "molecular switch" to afford a weak, pure mGlu5 PAM. Further optimization was able to deliver a potent (mGlu5 EC50 = 520 nM, 63% Glu Max), centrally penetrant (Kp = 0.83), MPEP-site binding mGlu5 PAM 17a (VU6036486) that reversed amphetamine-induced hyperlocomotion. A pronounced "magic methyl" effect was noted with a regioisomeric methyl congener, leading to a change in pharmacology to afford a potent (mGlu5 IC50 = 110 nM, 3% Glu Min), centrally penetrant (Kp = 0.94), MPEP-site binding NAM 28d (VU6044766) that displayed anxiolytic activity in a mouse marble burying assay. These data further support the growing body of literature concerning the existence of G protein-coupled receptor (GPCR) allosteric privileged structures, and the value and impact of subtle methyl group walks, as well as the highly productive fluorine walk, around allosteric ligand cores to stabilize unique GPCR conformations.

8.
ACS Chem Neurosci ; 10(3): 1035-1042, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30086237

ABSTRACT

This Letter describes the chemical optimization of a new series of muscarinic acetylcholine receptor subtype 1 (M1) positive allosteric modulators (PAMs) based on novel tricyclic triazolo- and imidazopyridine lactam cores, devoid of M1 agonism, e.g., no M1 ago-PAM activity, in high expressing recombinant cell lines. While all the new tricyclic congeners afforded excellent rat pharmacokinetic (PK) properties (CLp < 8 mL/min/kg and t1/2 > 5 h), regioisomeric triazolopyridine analogues were uniformly not CNS penetrant ( Kp < 0.05), despite a lack of hydrogen bond donors. However, removal of a single nitrogen atom to afford imidazopyridine derivatives proved to retain the excellent rat PK and provide high CNS penetration ( Kp > 2), despite inclusion of a basic nitrogen. Moreover, 24c was devoid of M1 agonism in high expressing recombinant cell lines and did not induce cholinergic seizures in vivo in mice. Interestingly, all of the new M1 PAMs across the diverse tricyclic heterocyclic cores possessed equivalent CNS MPO scores (>4.5), highlighting the value of both "medicinal chemist's eye" and experimental data, e.g., not sole reliance (or decision bias) on in silico calculated properties, for parameters as complex as CNS penetration.


Subject(s)
Drug Discovery/methods , Imidazoles/pharmacology , Lactams/pharmacology , Muscarinic Agonists/pharmacology , Pyridines/pharmacology , Receptor, Muscarinic M1/agonists , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Drug Discovery/trends , Humans , Imidazoles/chemistry , Lactams/chemistry , Mice , Muscarinic Agonists/chemistry , Pyridines/chemistry , Rats , Receptor, Muscarinic M1/physiology
9.
ACS Med Chem Lett ; 9(9): 917-922, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30258541

ABSTRACT

Herein, we report the chemical optimization of a new series of M1 positive allosteric modulators (PAMs) based on a novel pyrrolo[2,3-b]pyridine core, developed via scaffold hopping and iterative parallel synthesis. The vast majority of analogs in this series proved to display robust cholinergic seizure activity. However, by removal of the secondary hydroxyl group, VU6007477 resulted with good rat M1 PAM potency (EC50 = 230 nM, 93% ACh max), minimal M1 agonist activity (agonist EC50 > 10 µM), good CNS penetration (rat brain/plasma K p = 0.28, K p,uu = 0.32; mouse K p = 0.16, K p,uu = 0.18), and no cholinergic adverse events (AEs, e.g., seizures). This work demonstrates that within a chemical series prone to robust M1 ago-PAM activity, SAR can result, which affords pure M1 PAMs, devoid of cholinergic toxicity/seizure liability.

10.
ACS Chem Neurosci ; 9(9): 2274-2285, 2018 09 19.
Article in English | MEDLINE | ID: mdl-29701957

ABSTRACT

Selective activation of the M1 subtype of muscarinic acetylcholine receptor, via positive allosteric modulation (PAM), is an exciting strategy to improve cognition in schizophrenia and Alzheimer's disease patients. However, highly potent M1 ago-PAMs, such as MK-7622, PF-06764427, and PF-06827443, can engender excessive activation of M1, leading to agonist actions in the prefrontal cortex (PFC) that impair cognitive function, induce behavioral convulsions, and result in other classic cholinergic adverse events (AEs). Here, we report a fundamentally new and highly selective M1 PAM, VU0486846. VU0486846 possesses only weak agonist activity in M1-expressing cell lines with high receptor reserve and is devoid of agonist actions in the PFC, unlike previously reported ago-PAMs MK-7622, PF-06764427, and PF-06827443. Moreover, VU0486846 shows no interaction with antagonist binding at the orthosteric acetylcholine (ACh) site (e.g., neither bitopic nor displaying negative cooperativity with [3H]-NMS binding at the orthosteric site), no seizure liability at high brain exposures, and no cholinergic AEs. However, as opposed to ago-PAMs, VU0486846 produces robust efficacy in the novel object recognition model of cognitive function. Importantly, we show for the first time that an M1 PAM can reverse the cognitive deficits induced by atypical antipsychotics, such as risperidone. These findings further strengthen the argument that compounds with modest in vitro M1 PAM activity (EC50 > 100 nM) and pure-PAM activity in native tissues display robust procognitive efficacy without AEs mediated by excessive activation of M1. Overall, the combination of compound assessment with recombinant in vitro assays (mindful of receptor reserve), native tissue systems (PFC), and phenotypic screens (behavioral convulsions) is essential to fully understand and evaluate lead compounds and enhance success in clinical development.


Subject(s)
Cognition/drug effects , Conditioning, Psychological/drug effects , Exploratory Behavior/drug effects , Morpholines/pharmacology , Prefrontal Cortex/drug effects , Pyrazoles/pharmacology , Allosteric Regulation , Animals , Antipsychotic Agents/toxicity , CHO Cells , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Cricetulus , Fear , Mice , Morpholines/toxicity , Pyrazoles/toxicity , Rats , Risperidone/toxicity , Seizures/chemically induced
11.
Neuropsychopharmacology ; 43(8): 1763-1771, 2018 07.
Article in English | MEDLINE | ID: mdl-29581537

ABSTRACT

Highly selective positive allosteric modulators (PAMs) of the M1 subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach for improving cognitive function in patients suffering from Alzheimer's disease and schizophrenia. However, excessive activation of M1 is known to induce seizure activity and have actions in the prefrontal cortex (PFC) that could impair cognitive function. We now report a series of pharmacological, electrophysiological, and behavioral studies in which we find that recently reported M1 PAMs, PF-06764427 and MK-7622, have robust agonist activity in cell lines and agonist effects in the mouse PFC, and have the potential to overactivate the M1 receptor and disrupt PFC function. In contrast, structurally distinct M1 PAMs (VU0453595 and VU0550164) are devoid of agonist activity in cell lines and maintain activity dependence of M1 activation in the PFC. Consistent with the previously reported effect of PF-06764427, the ago-PAM MK-7622 induces severe behavioral convulsions in mice. In contrast, VU0453595 does not induce behavioral convulsions at doses well above those required for maximal efficacy in enhancing cognitive function. Furthermore, in contrast to the robust efficacy of VU0453595, the ago-PAM MK-7622 failed to improve novel object recognition, a rodent assay of cognitive function. These findings suggest that in vivo cognition-enhancing efficacy of M1 PAMs can be observed with PAMs lacking intrinsic agonist activity and that intrinsic agonist activity of M1 PAMs may contribute to adverse effects and reduced efficacy in improving cognitive function.


Subject(s)
Cholinergic Agents/pharmacology , Nootropic Agents/pharmacology , Receptor, Muscarinic M1/metabolism , Allosteric Regulation , Animals , CHO Cells , Cricetulus , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Male , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/genetics , Recognition, Psychology/drug effects , Tissue Culture Techniques
12.
Neuropsychopharmacology ; 42(13): 2553-2566, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28664928

ABSTRACT

Activation of ß-adrenergic receptors (ßARs) enhances both the induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells and hippocampal-dependent cognitive function. Interestingly, previous studies reveal that coincident activation of group II metabotropic glutamate (mGlu) receptors with ßARs in the hippocampal astrocytes induces a large increase in cyclic-AMP (cAMP) accumulation and release of adenosine. Adenosine then acts on A1 adenosine receptors at neighboring excitatory Schaffer collateral terminals, which could counteract effects of activation of neuronal ßARs on excitatory transmission. On the basis of this, we postulated that activation of the specific mGlu receptor subtype that mediates this response could inhibit ßAR-mediated effects on hippocampal synaptic plasticity and cognitive function. Using novel mGlu receptor subtype-selective allosteric modulators along with knockout mice we now report that the effects of mGlu2/3 agonists on ßAR-mediated increases in cAMP accumulation are exclusively mediated by mGlu3. Furthermore, mGlu3 activation inhibits the ability of the ßAR agonist isoproterenol to enhance hippocampal LTP, and this effect is absent in slices treated with either a glial toxin or an adenosine A1 receptor antagonist. Finally, systemic administration of the mGlu2/3 agonist LY379268 disrupted contextual fear memory in a manner similar to the effect of the ßAR antagonist propranolol, and this effect was reversed by the mGlu3-negative allosteric modulator VU0650786. Taken together, these data suggest that mGlu3 can influence astrocytic signaling and modulate ßAR-mediated effects on hippocampal synaptic plasticity and cognitive function.


Subject(s)
Cyclic AMP/metabolism , Long-Term Potentiation/physiology , Memory Consolidation/physiology , Receptors, Adrenergic, beta/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Long-Term Potentiation/drug effects , Male , Memory Consolidation/drug effects , Mice, Inbred ICR , Mice, Knockout , Neurotransmitter Agents/pharmacology , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/genetics , Tissue Culture Techniques
13.
ACS Chem Neurosci ; 8(10): 2254-2265, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28679049

ABSTRACT

Selective potentiation of the mGlu5 subtype of metabotropic glutamate (mGlu) receptor using positive allosteric modulators (PAMs) has robust cognition-enhancing effects in rodent models that are relevant for schizophrenia. Until recently, these effects were thought to be due to potentiation of mGlu5-induced modulation of NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity. However, "biased" mGlu5 PAMs that do not potentiate mGlu5 effects on NMDAR currents show efficacy that is similar to that of prototypical mGlu5 PAMs, suggesting that NMDAR-independent mechanisms must be involved in these actions. We now report that synaptic activation of mGlu5 is required for a form of long-term depression (mLTD) in mouse prefrontal cortex (PFC) that is induced by activation of M1 muscarinic acetylcholine (mAChR) receptors, which was previously thought to be independent of mGlu5 activation. Interestingly, a biased mGlu5 PAM, VU0409551, that does not potentiate mGlu5 modulation of NMDAR currents, potentiated induction of mLTD. Furthermore, coactivation of mGlu5 and M1 receptors increased GABAA-dependent inhibitory tone in the PFC pyramidal neurons, which likely contributes to the observed mLTD. Finally, systemic administration of the biased mGlu5 PAM reversed deficits in mLTD and associated cognitive deficits in a model of cortical disruption caused by repeated phencyclidine exposure that is relevant for schizophrenia and was previously shown to be responsive to selective M1 muscarinic receptor PAMs. These studies provide exciting new insights into a novel mechanism by which mGlu5 PAMs can reverse deficits in PFC function and cognition that is independent of modulation of NMDAR currents.


Subject(s)
Cholinergic Agents/pharmacology , Prefrontal Cortex/drug effects , Receptor, Metabotropic Glutamate 5/metabolism , Schizophrenia/drug therapy , Synaptic Transmission/drug effects , Animals , Antipsychotic Agents/pharmacology , Cognition/drug effects , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Phencyclidine/pharmacology , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Neuropharmacology ; 118: 209-222, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28336323

ABSTRACT

The dorsolateral striatum is critically involved in movement control and motor learning. Striatal function is regulated by a variety of neuromodulators including acetylcholine. Previous studies have shown that cholinergic activation excites striatal principal projection neurons, medium spiny neurons (MSNs), and this action is mediated by muscarinic acetylcholine subtype 1 receptors (M1) through modulating multiple potassium channels. In the present study, we used electrophysiology techniques in conjunction with optogenetic and pharmacological tools to determine the long-term effects of striatal cholinergic activation on MSN intrinsic excitability. A transient increase in acetylcholine release in the striatum by optogenetic stimulation resulted in a long-lasting increase in excitability of MSNs, which was associated with hyperpolarizing shift of action potential threshold and decrease in afterhyperpolarization (AHP) amplitude, leading to an increase in probability of EPSP-action potential coupling. The M1 selective antagonist VU0255035 prevented, while the M1 selective positive allosteric modulator (PAM) VU0453595 potentiated the cholinergic activation-induced persistent increase in MSN intrinsic excitability, suggesting that M1 receptors are critically involved in the induction of this long-lasting response. This M1 receptor-dependent long-lasting change in MSN intrinsic excitability could have significant impact on striatal processing and might provide a novel mechanism underlying cholinergic regulation of the striatum-dependent motor learning and cognitive function. Consistent with this, behavioral studies indicate that potentiation of M1 receptor signaling by VU0453595 enhanced performance of mice in cue-dependent water-based T-maze, a dorsolateral striatum-dependent learning task.


Subject(s)
Corpus Striatum/cytology , Excitatory Postsynaptic Potentials/physiology , Neurons/physiology , Receptor, Muscarinic M1/metabolism , Acetylcholine/pharmacology , Action Potentials/drug effects , Action Potentials/genetics , Animals , Channelrhodopsins , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Cholinergic Agents/pharmacology , Cues , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Female , Gene Expression Regulation/drug effects , Learning/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Neurons/drug effects , Photic Stimulation
15.
ACS Chem Neurosci ; 8(4): 866-883, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28001356

ABSTRACT

Both historical clinical and recent preclinical data suggest that the M1 muscarinic acetylcholine receptor is an exciting target for the treatment of Alzheimer's disease and the cognitive and negative symptom clusters in schizophrenia; however, early drug discovery efforts targeting the orthosteric binding site have failed to afford selective M1 activation. Efforts then shifted to focus on selective activation of M1 via either allosteric agonists or positive allosteric modulators (PAMs). While M1 PAMs have robust efficacy in rodent models, some chemotypes can induce cholinergic adverse effects (AEs) that could limit their clinical utility. Here, we report studies aimed at understanding the subtle structural and pharmacological nuances that differentiate efficacy from adverse effect liability within an indole-based series of M1 ago-PAMs. Our data demonstrate that closely related M1 PAMs can display striking differences in their in vivo activities, especially their propensities to induce adverse effects. We report the discovery of a novel PAM in this series that is devoid of observable adverse effect liability. Interestingly, the molecular pharmacology profile of this novel PAM is similar to that of a representative M1 PAM that induces severe AEs. For instance, both compounds are potent ago-PAMs that demonstrate significant interaction with the orthosteric site (either bitopic or negative cooperativity). However, there are subtle differences in efficacies of the compounds at potentiating M1 responses, agonist potencies, and abilities to induce receptor internalization. While these differences may contribute to the differential in vivo profiles of these compounds, the in vitro differences are relatively subtle and highlight the complexities of allosteric modulators and the need to focus on in vivo phenotypic screening to identify safe and effective M1 PAMs.


Subject(s)
Allosteric Regulation/drug effects , Drug Discovery , Muscarinic Agonists/chemistry , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M1/drug effects , Animals , Humans , Mice , Muscarinic Agonists/chemical synthesis , Rats , Receptor, Muscarinic M1/metabolism , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 26(19): 4637-4640, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27575469

ABSTRACT

This Letter describes the further lead optimization of the CHT inhibitor probe, ML352 (VU0476201), and the development of VU6001221, an improved in vivo tool. A multi-dimensional optimization effort encountered steep SAR, and ultimately, subtle tuning of the electronics of the central phenyl core provided VU6001221, a CHT inhibitor with comparable potency for choline uptake inhibition as ML352, yet improved PK and CNS penetration. Moreover, VU6001221 enabled evaluation, for the first time, of a CHT inhibitor in a standard preclinical rodent cognition model, novel object recognition (NOR). We observed VU6001221 to elicit a dose-responsive increase in NOR, raising the possibility of agonism of synaptic α7 nicotinic ACh receptors by elevated extracellular choline, that if confirmed would represent a novel molecular strategy to enhance cognition.


Subject(s)
Benzamides/pharmacology , Isoxazoles/pharmacology , Membrane Transport Proteins/drug effects , Oxazoles/pharmacology , Piperidines/pharmacology , Animals , Benzamides/chemistry , Benzamides/pharmacokinetics , Dose-Response Relationship, Drug , Half-Life , Inhibitory Concentration 50 , Isoxazoles/chemistry , Isoxazoles/pharmacokinetics , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Piperidines/chemistry , Piperidines/pharmacokinetics , Rats , Structure-Activity Relationship
17.
Neuron ; 86(4): 1029-1040, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25937172

ABSTRACT

Schizophrenia is associated with disruptions in N-methyl-D-aspartate glutamate receptor subtype (NMDAR)-mediated excitatory synaptic signaling. The metabotropic glutamate receptor subtype 5 (mGlu5) is a closely associated signaling partner with NMDARs and regulates NMDAR function in forebrain regions implicated in the pathology of schizophrenia. Efficacy of mGlu5 positive allosteric modulators (PAMs) in animal models of psychosis and cognition was previously attributed to potentiation of NMDAR function. To directly test this hypothesis, we identified VU0409551 as a novel mGlu5 PAM that exhibits distinct stimulus bias and selectively potentiates mGlu5 coupling to Gαq-mediated signaling but not mGlu5 modulation of NMDAR currents or NMDAR-dependent synaptic plasticity in the rat hippocampus. Interestingly, VU0409551 produced robust antipsychotic-like and cognition-enhancing activity in animal models. These data provide surprising new mechanistic insights into the actions of mGlu5 PAMs and suggest that modulation of NMDAR currents is not critical for in vivo efficacy. VIDEO ABSTRACT.


Subject(s)
Antipsychotic Agents/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Allosteric Regulation/drug effects , Animals , Cognition/drug effects , Cognition/physiology , Glutamic Acid/metabolism , HEK293 Cells , Hippocampus/drug effects , Hippocampus/physiology , Humans , Male , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/genetics , Signal Transduction/drug effects
18.
J Neuroinflammation ; 9: 218, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22985494

ABSTRACT

BACKGROUND: Altered permeability of the blood-brain barrier (BBB) is a feature of numerous neurological conditions including multiple sclerosis, cerebral malaria, viral hemorrhagic fevers and acute hemorrhagic leukoencephalitis. Our laboratory has developed a murine model of CD8 T cell-initiated central nervous system (CNS) vascular permeability in which vascular endothelial growth factor (VEGF) signaling plays a prominent role in BBB disruption. FINDINGS: In this study, we addressed the hypothesis that in vivo blockade of VEGF signal transduction through administration of peptide (ATWLPPR) to inhibit neuropilin-1 (NRP-1) would have a therapeutic effect following induction of CD8 T cell-initiated BBB disruption. We report that inhibition of NRP-1, a co-receptor that enhances VEGFR2 (flk-1) receptor activation, decreases vascular permeability, brain hemorrhage, and mortality in this model of CD8 T cell-initiated BBB disruption. We also examine the expression pattern of VEGFR2 (flk-1) and VEGFR1 (flt-1) mRNA expression during a time course of this condition. We find that viral infection of the brain leads to increased expression of flk-1 mRNA. In addition, flk-1 and flt-1 expression levels decrease in the striatum and hippocampus in later time points following induction of CD8 T cell-mediated BBB disruption. CONCLUSION: This study demonstrates that NRP-1 is a potential therapeutic target in neuro-inflammatory diseases involving BBB disruption and brain hemorrhage. Additionally, the reduction in VEGF receptors subsequent to BBB disruption could be involved in compensatory negative feedback as an attempt to reduce vascular permeability.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Capillary Permeability/physiology , Central Nervous System/physiology , Neuropilin-1/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Mice , Mice, Inbred C57BL , Models, Animal , Neuropilin-1/antagonists & inhibitors , Peptides/pharmacology , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
J Comp Neurol ; 520(11): 2459-74, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22237931

ABSTRACT

(±)3,4-Methylenedioxymethamphetamine (MDMA), a widely used drug of abuse, rapidly reduces serotonin levels in the brain when ingested or administered in sufficient quantities, resulting in deficits in complex route-based learning, spatial learning, and reference memory. Neurotrophins are important for survival and preservation of neurons in the adult brain, including serotonergic neurons. In this study, we examined the effects of MDMA on the expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their respective high-affinity receptors, tropomyosin receptor kinase (trk)B and trkC, in multiple regions of the rat brain. A serotonergic-depleting dose of MDMA (10 mg/kg × 4 at 2-hour intervals on a single day) was administered to adult Sprague-Dawley rats, and brains were examined 1, 7, or 24 hours after the last dose. Messenger RNA levels of BDNF, NT-3, trkB, and trkC were analyzed by using in situ hybridization with cRNA probes. The prefrontal cortex was particularly vulnerable to MDMA-induced alterations in that BDNF, NT-3, trkB, and trkC mRNAs were all upregulated at multiple time points. MDMA-treated animals had increased BDNF expression in the frontal, parietal, piriform, and entorhinal cortices, increased NT-3 expression in the anterior cingulate cortex, and elevated trkC in the entorhinal cortex. In the nigrostriatal system, BDNF expression was upregulated in the substantia nigra pars compacta, and trkB was elevated in the striatum in MDMA-treated animals. Both neurotrophins and trkB were differentially regulated in several regions of the hippocampal formation. These findings suggest a possible role for neurotrophin signaling in the learning and memory deficits seen following MDMA treatment.


Subject(s)
Brain-Derived Neurotrophic Factor/drug effects , Cerebral Cortex/drug effects , Hallucinogens/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Neurotrophin 3/drug effects , Animals , Body Temperature/drug effects , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/metabolism , Corticosterone/blood , Hippocampus/drug effects , Hippocampus/metabolism , Male , Neostriatum/drug effects , Neostriatum/metabolism , Neurotrophin 3/genetics , Neurotrophin 3/metabolism , RNA, Messenger/analysis , Random Allocation , Rats , Rats, Sprague-Dawley , Receptor, trkB/drug effects , Receptor, trkB/genetics , Receptor, trkB/metabolism , Receptor, trkC/drug effects , Receptor, trkC/genetics , Receptor, trkC/metabolism , Serotonin Agents/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Time Factors , Tyrosine 3-Monooxygenase/drug effects , Tyrosine 3-Monooxygenase/metabolism
20.
J Pharmacol Exp Ther ; 340(2): 404-21, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22088953

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu4), including N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu4 PAMsexhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu4 in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu4 PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with L-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of L-DOPA, suggesting that mGlu4 PAMs may provide L-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu4 PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either L-DOPA or A2A antagonists.


Subject(s)
Adenosine A2 Receptor Antagonists/therapeutic use , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Picolinic Acids/therapeutic use , Receptors, Metabotropic Glutamate/agonists , 3,4-Dihydroxyphenylacetic Acid/metabolism , Adenosine A2 Receptor Antagonists/blood , Adenosine A2 Receptor Antagonists/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain/physiopathology , Calcium Signaling/drug effects , Catalepsy/chemically induced , Catalepsy/drug therapy , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Drug Therapy, Combination , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Glutamic Acid/pharmacology , HEK293 Cells , Haloperidol/pharmacology , Humans , Levodopa/metabolism , Male , Monoamine Oxidase/metabolism , Motor Neuron Disease/chemically induced , Motor Neuron Disease/drug therapy , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Motor Neuron Disease/physiopathology , Oxidopamine/pharmacology , Picolinic Acids/blood , Picolinic Acids/metabolism , Picolinic Acids/pharmacokinetics , Picolinic Acids/pharmacology , Protein Binding , Psychomotor Performance/drug effects , Pyrimidines/blood , Pyrimidines/metabolism , Pyrimidines/therapeutic use , Rats , Rats, Sprague-Dawley , Rats, Wistar , Reaction Time/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Receptors, Metabotropic Glutamate/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...