Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(3): 292-311, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38366587

ABSTRACT

Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Cell Differentiation
2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38267019

ABSTRACT

This study examined the effects of varying protein sources on apparent total tract digestibility, inflammatory markers, and fecal microbiota in Labrador Retrievers with historically poor stool quality. Thirty dogs (15 male, 15 female; aged 0.93 to 11.7 yr) with stool quality scores ≤2.5 on a 5-point scale (1 representing liquid stool and 5 representing firm stool) were randomly assigned to 1 of 3 nutritionally complete diets with differing protein sources and similar macronutrient profiles: 1) chicken meal (n = 10); 2) 10% brewer's yeast (n = 10); or 3) 10% torula yeast (n = 10). Another 10 dogs (five male, five female) with normal stool quality (scores ranging from 3 to 4) received diet 1 and served as negative control (NC). All dogs were fed diet 1 for 7 days, then provided their assigned treatment diets from days 7 to 37. Daily stool scores and weekly body weights were recorded. On days 7, 21, and 36, blood serum was analyzed for c-reactive protein (CRP), and feces for calgranulin C (S100A12), α1-proteinase inhibitor (α1-PI), calprotectin, and microbiota dysbiosis index. Apparent total tract digestibility was assessed using the indicator method with 2 g titanium dioxide administered via oral capsules. Stool scores were greater in NC (P < 0.01) as designed but not affected by treatment × time interaction (P = 0.64). Body weight was greater (P = 0.01) and CRP lower (P < 0.01) in NC dogs. Dry matter and nitrogen-free extract digestibility did not differ among groups (P ≥ 0.14). Negative controls had greater fat digestibility compared to BY (94.64 ±â€…1.33% vs. 91.65 ±â€…1.25%; P = 0.02). The overall effect of treatment was significant for protein digestibility (P = 0.03), but there were no differences in individual post hoc comparisons (P ≥ 0.07). Treatment did not affect S100A12 or α1-PI (P ≥ 0.44). Calprotectin decreased at a greater rate over time in TY (P < 0.01). The dysbiosis index score for BY and TY fluctuated less over time (P = 0.01). Blautia (P = 0.03) and Clostridium hiranonis (P = 0.05) abundances were reduced in BY and TY. Dogs with chronically poor stool quality experienced reduced body weights and increased serum CRP, but TY numerically increased protein digestibility, altered the microbiome, and reduced fecal calprotectin. Torula yeast is a suitable alternative protein source in extruded canine diets, but further research is needed to understand the long-term potential for improving the plane of nutrition and modulating gut health.


Pet and human populations continue to grow and compete for nutritious, sustainable protein sources. The incorporation of alternative proteins like torula yeast can provide a solution to this problem. Torula yeast also may have additional health benefits like reducing gut inflammation. To test its effects in dogs, we fed Labrador Retrievers with chronically poor stool quality either a control diet with chicken meal, a diet with 10% brewer's yeast, or a diet with 10% torula yeast. We compared their responses to dogs with normal stool quality fed the control diet. Dogs with chronically poor stool quality had lower body weights and increased systemic inflammation compared to those with good stool quality. Calprotectin, a marker of gut inflammation, was reduced more in dogs fed torula yeast than in dogs fed chicken meal. Torula and brewer's yeast also changed the abundance of certain gut bacteria. Torula yeast may be added to dog diets with no negative effects and can alter the gut environment in Labrador Retrievers with chronically poor stool quality.


Subject(s)
Cryptococcus , Dog Diseases , Microbiota , Dogs , Animals , Female , Male , Saccharomyces cerevisiae , S100A12 Protein/pharmacology , Digestion , Dysbiosis/veterinary , Feces , Diet/veterinary , Body Weight , Leukocyte L1 Antigen Complex/pharmacology , Animal Feed/analysis
3.
CRISPR J ; 5(6): 769-786, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257604

ABSTRACT

While CRISPR interference (CRISPRi) systems have been widely implemented in pooled lentiviral screening, there has been limited use with synthetic guide RNAs for the complex phenotypic readouts enabled by experiments in arrayed format. Here we describe a novel deactivated Cas9 fusion protein, dCas9-SALL1-SDS3, which produces greater target gene repression than first or second generation CRISPRi systems when used with chemically modified synthetic single guide RNAs (sgRNAs), while exhibiting high target specificity. We show that dCas9-SALL1-SDS3 interacts with key members of the histone deacetylase and Swi-independent three complexes, which are the endogenous functional effectors of SALL1 and SDS3. Synthetic sgRNAs can also be used with in vitro-transcribed dCas9-SALL1-SDS3 mRNA for short-term delivery into primary cells, including human induced pluripotent stem cells and primary T cells. Finally, we used dCas9-SALL1-SDS3 for functional gene characterization of DNA damage host factors, orthogonally to small interfering RNA, demonstrating the ability of the system to be used in arrayed-format screening.


Subject(s)
CRISPR-Cas Systems , Induced Pluripotent Stem Cells , Humans , CRISPR-Cas Systems/genetics , Gene Editing , CRISPR-Associated Protein 9/genetics , RNA, Guide, CRISPR-Cas Systems
4.
PLoS One ; 16(4): e0250107, 2021.
Article in English | MEDLINE | ID: mdl-33886609

ABSTRACT

Macrophages are innate immune cells that play critical roles in tissue homeostasis, inflammation, and immune oncology. Macrophages differentiated from human induced pluripotent stem cells (iPSCs) overcome many limitations of using peripheral blood derived macrophages. The ability to scale up and cryopreserve a large amount of end stage macrophages from single clonal iPSCs from normal and disease specific donors offers a unique opportunity for genomic analysis and drug screening. The present study describes the step wise generation and characterization of macrophages from iPSCs using a defined serum free method amenable to scale up to generate a large batch of pure end stage cryopreservable macrophages expressing CD68, CD33, CD11c, CD11b, CD1a, HLA-DR, CD86, CD64, CD80, CD206, CD169, CD47, HLA-ABC, and CX3CR. The end stage macrophages pre and post cryopreservation retain purity, morphology, responsiveness to stimuli and display robust phagocytic function coming right out of cryopreservation. The same differentiation process was used to generate end stage macrophages from isogenic iPSCs engineered to mimic mutations associated with Parkinson's disease (SNCA A53T), neuronal ceroid lipofuscinosis (GRN2/GRN R493X), and Rett syndrome (MECP2-Knockout). End stage macrophages from isogenic engineered clones displayed differential macrophage-specific purity markers, phagocytic function, and response to specific stimuli. Thus, generating a panel of functional, physiologically relevant iPSC-derived macrophages can potentially facilitate the understanding of neural inflammatory responses associated with neurodegeneration.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Macrophages/cytology , Antigens, CD/metabolism , Biomarkers/metabolism , Cryopreservation , Humans , Macrophages/metabolism
5.
Health Policy Plan ; 35(6): 676-683, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32433760

ABSTRACT

Many countries have expanded insurance programmes in an effort to achieve universal health coverage (UHC). We assess a complementary path toward financial risk protection: increased access to technologies that improve health and reduce the risk of large health expenditures. Malawi has provided free HIV treatment since 2004 with significant US Government support. We investigate the impact of treatment access on medical spending, capacity to pay and catastrophic health expenditures at the population level, exploiting the phased rollout of HIV treatment in a difference-in-differences design. We find that increased access to HIV treatment generated a 10% decline in medical spending for urban households, a 7% increase in capacity to pay for rural households and a 3-percentage point decrease in the likelihood of catastrophic health expenditure among urban households. These risk protection benefits are comparable to that found from broad-based insurance coverage in other contexts. Our findings show that targeted treatment programmes that provide free care for high burden causes of death can provide substantial financial risk protection against catastrophic health expenditure, while moving developing nations toward UHC.


Subject(s)
Anti-Retroviral Agents/economics , HIV Infections/drug therapy , Health Expenditures/statistics & numerical data , Catastrophic Illness/economics , Financing, Personal/statistics & numerical data , HIV Infections/economics , Humans , Malawi , Rural Population , Urban Population
6.
J Biotechnol ; 319: 25-35, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32470463

ABSTRACT

The CRISPR-Cas9 system has been adapted for transcriptional activation (CRISPRa) and several second-generation CRISPRa systems (including VPR, SunTag, and SAM) have been developed to recruit different transcriptional activators to a deactivated Cas9, which is guided to a transcriptional start site via base complementarity with a target guide RNA. Multiple studies have shown the benefit of CRISPRa using plasmid or lentiviral expressed guide RNA, but the use of synthetic guide RNA has not been reported. Here we demonstrate the effective use of synthetic guide RNA for gene activation via CRISPRa. CRISPRa crRNA may be used with a canonical tracrRNA using the VPR or SunTag activation systems or with an extended tracrRNA containing an aptamer sequence for the SAM system. Transcriptional activation with synthetic crRNA:tracrRNA is comparable to activation achieved with expression vectors and combining several crRNA sequences targeting the same gene can enhance transcriptional activation. The use of synthetic crRNA is also ideal for simultaneous activation of multiple genes or use with dCas9-VPR mRNA when viral transduction is not feasible. Here, we perform a proof-of-principle arrayed screen using a CRISPRa crRNA library consisting of 153 cytokine receptor targets to identify regulators of IL-6 cytokine secretion. Together, these results demonstrate the suitability of synthetic CRISPRa guide RNA for high throughput, arrayed screening applications which allow for more complex phenotypic readouts to complement viability and drug resistance assays typically used in a pooled screening format.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, Kinetoplastida , Transcriptional Activation/genetics , Animals , Aptamers, Nucleotide/genetics , HEK293 Cells , Humans , Mice , NIH 3T3 Cells
7.
Biochemistry ; 56(21): 2651-2662, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28505413

ABSTRACT

The herpes helicase-primase (UL5-UL8-UL52) very inefficiently unwinds double-stranded DNA. To better understand the mechanistic consequences of this inefficiency, we investigated protein displacement activity by UL5-UL8-UL52, as well as the impact of coupling DNA synthesis by the herpes polymerase with helicase activity. While the helicase can displace proteins bound to the lagging strand template, bound proteins significantly impede helicase activity. Remarkably, UL5-UL8-UL52, an extremely inefficient helicase, disrupts the exceptionally tight interaction between streptavidin and biotin on the lagging strand template. It also unwinds DNA containing streptavidin bound to the leading strand template, although it does not displace the streptavidin. These data suggest that the helicase may largely or completely wrap around the lagging strand template, with minimal interactions with the leading strand template. We utilized synthetic DNA minicircles to study helicase activity coupled with the herpes polymerase-processivity factor (UL30-UL42). Coupling greatly enhances unwinding of DNA, although bound proteins still inhibit helicase activity. Surprisingly, while UL30-UL42 and two noncognate polymerases (Klenow Fragment and T4 DNA polymerase) all stimulate unwinding of DNA by the helicase, the isolated UL30 polymerase (i.e., no UL42 processivity factor) binds to the replication fork but in a manner that is incompetent in terms of coupled helicase-polymerase activity.


Subject(s)
DNA Helicases/metabolism , DNA Primase/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , Exodeoxyribonucleases/metabolism , Viral Proteins/metabolism
8.
J Org Chem ; 82(20): 10803-10811, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28282138

ABSTRACT

Small molecule/DNA hybrids (SMDHs) have been considered as nanoscale building blocks for engineering 2D and 3D supramolecular DNA assembly. Herein, we report an efficient on-bead amide-coupling approach to prepare SMDHs with multiple oligodeoxynucleotide (ODN) strands. Our method is high yielding under mild and user-friendly conditions with various organic substrates and homo- or mixed-sequenced ODNs. Metal catalysts and moisture- and air-free conditions are not required. The products can be easily analyzed by LC-MS with accurate mass resolution. We also explored nanometer-sized shape-persistent macrocycles as novel multitopic organic linkers to prepare SMDHs. SMDHs bearing up to six ODNs were successfully prepared through the coupling of arylenethynylene macrocycles with ODNs, which were used to mediate the assembly of gold nanoparticles.


Subject(s)
Amides/chemistry , DNA/chemistry , Small Molecule Libraries/chemistry , Molecular Structure , Oligodeoxyribonucleotides/chemistry
9.
Stem Cells ; 32(6): 1480-92, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24532057

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny.


Subject(s)
Homeodomain Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Retina/embryology , Retina/metabolism , Transcription Factors/metabolism , Adult , Amino Acid Substitution , Animals , Body Patterning/genetics , Cell Differentiation , Cell Line , Cell Lineage , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Male , Mice , Mutation/genetics , Phenotype , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Retina/pathology , Retinal Bipolar Cells/metabolism , Retinal Bipolar Cells/pathology , Retinal Pigment Epithelium/embryology , Retinal Pigment Epithelium/pathology , Sequence Analysis, RNA , Signal Transduction/genetics , Transcription Factors/genetics , Transcriptome/genetics
10.
Invest Ophthalmol Vis Sci ; 53(4): 2007-19, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22410558

ABSTRACT

PURPOSE: We sought to determine if human induced pluripotent stem cells (iPSCs) derived from blood could produce optic vesicle-like structures (OVs) with the capacity to stratify and express markers of intercellular communication. METHODS: Activated T-lymphocytes from a routine peripheral blood sample were reprogrammed by retroviral transduction to iPSCs. The T-lymphocyte-derived iPSCs (TiPSCs) were characterized for pluripotency and differentiated to OVs using our previously published protocol. TiPSC-OVs were then manually isolated, pooled, and cultured en masse to more mature stages of retinogenesis. Throughout this stepwise differentiation process, changes in anterior neural, retinal, and synaptic marker expression were monitored by PCR, immunocytochemistry, and/or flow cytometry. RESULTS: TiPSCs generated abundant OVs, which contained a near homogeneous population of proliferating neuroretinal progenitor cells (NRPCs). These NRPCs differentiated into multiple neuroretinal cell types, similar to OV cultures from human embryonic stem cells and fibroblast-derived iPSCs. In addition, portions of some TiPSC-OVs maintained their distinctive neuroepithelial appearance and spontaneously formed primitive laminae, reminiscent of the developing retina. Retinal progeny from TiPSC-OV cultures expressed numerous genes and proteins critical for synaptogenesis and gap junction formation, concomitant with the emergence of glia and the upregulation of thrombospondins in culture. CONCLUSIONS: We demonstrate for the first time that human blood-derived iPSCs can generate retinal cell types, providing a highly convenient donor cell source for iPSC-based retinal studies. We also show that cultured TiPSC-OVs have the capacity to self-assemble into rudimentary neuroretinal structures and express markers indicative of chemical and electrical synapses.


Subject(s)
Induced Pluripotent Stem Cells/physiology , Morphogenesis , Retina/growth & development , Synapses/physiology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/cytology , Retina/cytology , Retina/metabolism
11.
Blood ; 118(7): 1797-800, 2011 Aug 18.
Article in English | MEDLINE | ID: mdl-21708888

ABSTRACT

Generation of patient-specific induced pluripotent cells (iPSCs) holds great promise for regenerative medicine. Epstein-Barr virus immortalized lymphoblastoid B-cell lines (LCLs) can be generated from a minimal amount of blood and are banked worldwide as cellular reference material for immunologic or genetic analysis of pedigreed study populations. We report the generation of iPSCs from 2 LCLs (LCL-iPSCs) via a feeder-free episomal method using a cocktail of transcription factors and small molecules. LCL-derived iPSCs exhibited normal karyotype, expressed pluripotency markers, lost oriP/EBNA-1 episomal vectors, generated teratomas, retained donor identity, and differentiated in vitro into hematopoietic, cardiac, neural, and hepatocyte-like lineages. Significantly, although the parental LCLs express viral EBNA-1 and other Epstein-Barr virus latency-related elements for their survival, their presence was not detectable in LCL-iPSCs. Thus, reprogramming LCLs could offer an unlimited source for patient-specific iPSCs.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/virology , Herpesvirus 4, Human/isolation & purification , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/virology , B-Lymphocytes/metabolism , Cell Differentiation , Cell Line , Epstein-Barr Virus Nuclear Antigens/genetics , Genetic Vectors/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Humans , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Transfection
12.
Toxicol Appl Pharmacol ; 252(1): 36-46, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21277884

ABSTRACT

Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB). On P1, litter composition, anogenital distance (AGD), and body weight were assessed. Pups were euthanized for immunohistochemistry of estrogen receptor α (ERα) or TUNEL labeling of apoptotic cells or quantitative PCR of 48 selected genes in the preoptic area (POA). We found that treatment with EB or A1221 had a sex-specific effect on developmental apoptosis in the neonatal anteroventral periventricular nucleus (AVPV), a sexually dimorphic hypothalamic region involved in the regulation of reproductive neuroendocrine function. In this region, exposed females had increased numbers of apoptotic nuclei, whereas there was no effect of treatment in males. For ERα, EB treatment increased immunoreactive cell numbers and density in the medial preoptic nucleus (MPN) of both males and females, while A1221 and the PCB mixture had no effect. PCR analysis of gene expression in the POA identified nine genes that were significantly altered by prenatal EDC exposure, in a manner that varied by sex and treatment. These genes included brain-derived neurotrophic factor, GABA(B) receptors-1 and -2, IGF-1, kisspeptin receptor, NMDA receptor subunits NR2b and NR2c, prodynorphin, and TGFα. Collectively, these results suggest that the disrupted sexual differentiation of the POA by prenatal EDC exposures is already evident as early as the day after birth, effects that may change the trajectory of postnatal development and compromise adult reproductive function.


Subject(s)
Endocrine Disruptors/toxicity , Hypothalamus/drug effects , Hypothalamus/growth & development , Polychlorinated Biphenyls/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Age Factors , Animals , Animals, Newborn , Female , Hypothalamus/embryology , Male , Neurosecretory Systems/drug effects , Neurosecretory Systems/embryology , Neurosecretory Systems/growth & development , Pregnancy , Prenatal Exposure Delayed Effects/diagnosis , Random Allocation , Rats , Rats, Sprague-Dawley
13.
Endocrinology ; 152(2): 581-94, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21190954

ABSTRACT

In mammals, sexual differentiation of the hypothalamus occurs during prenatal and early postnatal development due in large part to sex differences in hormones. These early organizational processes are critically important for the attainment and maintenance of adult reproductive functions. We tested the hypothesis that perinatal exposure to polychlorinated biphenyls (PCBs) that disrupt hormonal pathways would perturb reproductive maturation and the sexually dimorphic development of neuroendocrine systems in the preoptic area (POA). Pregnant Sprague-Dawley rats were injected on gestational d 16 and 18 with vehicle (dimethylsulfoxide), Aroclor 1221 (A1221, an estrogenic PCB mix), a reconstituted PCB mixture representing those highest in human body burden (PCBs 138, 153, 180), or estradiol benzoate, an estrogenic control. Male and female pups were monitored for somatic and reproductive development. In adulthood, some rats were perfused and used for immunohistochemistry of estrogen receptor α, kisspeptin, and coexpression of Fos in GnRH neurons. Other rats were used to obtain fresh-frozen POA dissections for use in a PCR-based 48-gene expression array. Pubertal onset was advanced and estrous cyclicity irregular in endocrine-disrupted females. Furthermore, sexual differentiation of female neuroendocrine systems was masculinized/defeminized. Specifically, in the adult female anteroventral periventricular nucleus, estrogen receptor α-cell numbers and kisspeptin fiber density were significantly decreased, as was GnRH-Fos coexpression. PCR analysis identified androgen receptor, IGF-I, N-methyl-d-aspartate receptor subunit NR2b, and TGFß1 mRNAs as significantly down-regulated in endocrine-disrupted female POAs. These data suggest that developmental PCBs profoundly impair the sexual differentiation of the female hypothalamus.


Subject(s)
Neurosecretory Systems/drug effects , Polychlorinated Biphenyls/pharmacology , Sex Differentiation/drug effects , Animals , Estrogen Receptor alpha/metabolism , Female , Gonadotropin-Releasing Hormone/metabolism , Immunohistochemistry , Insulin-Like Growth Factor I/genetics , Kisspeptins , Male , Polymerase Chain Reaction , Pregnancy , Preoptic Area , Proteins/metabolism , Proto-Oncogene Proteins c-fos , Rats , Rats, Sprague-Dawley , Receptors, Androgen/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Transforming Growth Factor beta/genetics
14.
J Virol ; 84(9): 4383-94, 2010 May.
Article in English | MEDLINE | ID: mdl-20181712

ABSTRACT

The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 4, Human/physiology , Protein Kinases/metabolism , Protein Processing, Post-Translational , Trans-Activators/metabolism , Transcription, Genetic , Viral Proteins/metabolism , B-Lymphocytes/virology , Cell Line , Epithelial Cells/virology , Humans , Small Ubiquitin-Related Modifier Proteins/metabolism , Virus Activation , Virus Latency , Virus Replication
15.
Toxicol Appl Pharmacol ; 237(2): 237-45, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19362103

ABSTRACT

Exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4',5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2',3,4,4',5' pentachlorobiphenyl: PCB118), non-coplanar (2,2',4,4',5,5'-hexachlorobiphenyl: PCB153), or their combination. GnRH peptide concentrations, cell viability, apoptotic and necrotic cell death, and caspase activation were quantified. In general, GnRH peptide levels were suppressed by high doses and longer durations of PCBs, and elevated at low doses and shorter timepoints. The suppression of GnRH peptide levels was partially reversed in cultures co-treated with the estrogen receptor antagonist ICI 182,780. All PCBs reduced viability and increased both apoptotic and necrotic cell death. Although the effects for the three classes of PCBs were often similar, subtle differences in responses, together with evidence that the combination of PCBs acted slightly different from individual PCBs, suggest that the three tested PCB compounds may act via slightly different or more than one mechanism. These results provide evidence that PCB congeners have endocrine disrupting and/or neurotoxic effects on the hypothalamic GnRH cell line, a finding that has implications for environmental endocrine disruption in animals.


Subject(s)
Cell Death/drug effects , Neurons/drug effects , Polychlorinated Biphenyls/toxicity , Animals , Dose-Response Relationship, Drug , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Rats
16.
PLoS Pathog ; 5(3): e1000356, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19325883

ABSTRACT

The switch between latent and lytic Epstein-Barr virus (EBV) infection is mediated by the viral immediate-early (IE) protein, BZLF1 (Z). Z, a homologue of c-jun that binds to AP1-like motifs (ZREs), induces expression of the BRLF1 (R) and BRRF1 (Na) viral proteins, which cooperatively activate transcription of the Z promoter and thereby establish a positive autoregulatory loop. A unique feature of Z is its ability to preferentially bind to, and activate, the methylated form of the BRLF1 promoter (Rp). To date, however, Rp is the only EBV promoter known to be regulated in this unusual manner. We now demonstrate that the promoter driving transcription of the early BRRF1 gene (Nap) has two CpG-containing ZREs (ACGCTCA and TCGCCCG) that are only bound by Z in the methylated state. Both Nap ZREs are highly methylated in cells with latent EBV infection. Z efficiently activates the methylated, but not unmethylated, form of Nap in reporter gene assays, and both ZREs are required. Z serine residue 186, which was previously shown to be required for Z binding to methylated ZREs in Rp, but not for Z binding to the AP1 site, is required for Z binding to methylated Nap ZREs. The Z(S186A) mutant cannot activate methylated Nap in reporter gene assays and does not induce Na expression in cells with latent EBV infection. Molecular modeling studies of Z bound to the methylated Nap ZREs help to explain why methylation is required for Z binding, and the role of the Z Ser186 residue. Methylation-dependent Z binding to critical viral promoters may enhance lytic reactivation in latently infected cells, where the viral genome is heavily methylated. Conversely, since the incoming viral genome is initially unmethylated, methylation-dependent Z activation may also help the virus to establish latency following infection.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Viral/genetics , Herpesvirus 4, Human/genetics , Trans-Activators/genetics , Virus Latency/genetics , Animals , Blotting, Western , CpG Islands , Electrophoretic Mobility Shift Assay , Mice , Models, Molecular , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Transcription Factors/genetics , Transfection
17.
Neuroendocrinology ; 88(2): 95-102, 2008.
Article in English | MEDLINE | ID: mdl-18309234

ABSTRACT

Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug (+/-)-3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy'), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA either once (acute) or for 20 days (chronic) and were euthanized 7 days following the last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone concentrations, and serum testosterone levels as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the hypothalamic-pituitary-gonadal axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage.


Subject(s)
Hypothalamic Diseases/chemically induced , Hypothalamo-Hypophyseal System/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Reproduction/drug effects , Testis/drug effects , Animals , Endocrine Disruptors/toxicity , Gene Expression/drug effects , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamic Diseases/genetics , Hypothalamic Diseases/metabolism , Hypothalamic Diseases/physiopathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamus/drug effects , Hypothalamus/metabolism , Illicit Drugs/toxicity , Luteinizing Hormone/blood , Male , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Testis/pathology , Testis/physiopathology , Testosterone/blood
18.
Rev Endocr Metab Disord ; 8(2): 143-59, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17674209

ABSTRACT

Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with the normal function of an organism's endocrine system. Many EDCs are resistant to biodegradation, due to their structural stability, and persist in the environment. The focus of this review is on natural and artificial EDCs that act through estrogenic mechanisms to affect reproductive neuroendocrine systems. This endocrine axis comprises the hypothalamic gonadotropin-releasing hormone (GnRH), pituitary gonadotropins, and gonadal steroid hormones, including estrogens. Although it is not surprising that EDCs that mimic or antagonize estrogen receptors may exert actions upon reproductive targets, the mechanisms for these effects are complex and involve all three levels of the hypothalamic-pituitary-gonadal (HPG) system. Nevertheless, considerable evidence links exposure to estrogenic environmental EDCs with neuroendocrine reproductive deficits in wildlife and in humans. The effects of an EDC are variable across the life cycle of an animal, and are particularly potent when exposure occurs during fetal and early postnatal development. As a consequence, abnormal sexual differentiation, disrupted reproductive function, or inappropriate sexual behavior may be detected later in life. This review will cover the effects of two representative classes of estrogenic EDCs, phytoestrogens and polychlorinated biphenyls (PCBs), on neuroendocrine reproductive function, from molecules to behavior, across the vertebrate life cycle. Finally, we identify the gaps of knowledge in this field and suggest future directions for study.


Subject(s)
Endocrine Disruptors/toxicity , Endocrine System/drug effects , Environmental Pollutants/toxicity , Neurosecretory Systems/drug effects , Animals , Endocrine System/growth & development , Endocrine System/metabolism , Female , Male , Neurosecretory Systems/growth & development , Neurosecretory Systems/metabolism , Phytoestrogens/toxicity , Polychlorinated Biphenyls/toxicity , Sexual Maturation/drug effects
19.
J Virol ; 81(18): 10113-22, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17626078

ABSTRACT

The induction of lytic infection has been proposed as a therapeutic strategy for treating Epstein-Barr virus (EBV)-positive malignancies. To succeed, efficient methods are needed for activating the EBV immediate-early (IE) promoters, Zp and Rp. Here we compared factors which regulate Zp and Rp in AGS gastric carcinoma cells that support a remarkably high level of persistently lytic EBV infection with HeLa cervical cells that permit only tightly latent infection. We found that the level of Zp activity assayed by transient transfection assays with reporter plasmids was high in AGS cells but low in HeLa cells. The level of Rp activity was low in both cell types. Mutational analysis indicated that sequences within Zp located between -70 and +27 relative to the transcription initiation site were sufficient to confer a high level of Zp activity in AGS cells. The Zp CRE motif was necessary for this constitutive activity, while the ZIA and ZIB MEF2D motifs were not. Consistent with these findings, immunoblot analysis indicated that phosphorylated c-Jun, which activates Zp through the CRE motif, was expressed at a much higher level in EBV-infected AGS cells than in EBV-infected HeLa cells. In contrast, ZEB1, which represses Zp via the ZV motif located near the transcription initiation site, was abundant in HeLa cells, while it was absent from AGS cells. Exogenous addition of ZEB1 led to the repression of Zp in AGS cells. We conclude that the unusually high Zp activity level in AGS cells is due to the high abundance of positively acting transcription factors such as c-Jun combined with the low abundance of negatively acting factors such as ZEB1.


Subject(s)
Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/metabolism , Homeodomain Proteins/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-jun/metabolism , Repressor Proteins/metabolism , Stomach Neoplasms/metabolism , Transcription Factors/metabolism , Amino Acid Motifs , Epstein-Barr Virus Infections/genetics , HeLa Cells , Herpesvirus 4, Human/genetics , Homeodomain Proteins/genetics , Humans , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , MEF2 Transcription Factors , Mutation , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Phosphorylation , Proto-Oncogene Proteins c-jun/genetics , Repressor Proteins/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Stomach Neoplasms/virology , Transcription Factors/genetics , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , Zinc Finger E-box-Binding Homeobox 1
20.
J Virol ; 81(14): 7363-70, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17494074

ABSTRACT

Epstein-Barr virus (EBV) establishes a latent form of infection in memory B cells, while antibody-secreting plasma cells often harbor the lytic form of infection. The switch between latent and lytic EBV infection is mediated by the two viral immediate-early proteins BZLF1 (Z) and BRLF1 (R), which are not expressed in latently infected B cells. Here we demonstrate that a cellular transcription factor that plays an essential role in plasma cell differentiation, X-box-binding protein 1 (XBP-1), also activates the transcription of the two EBV immediate-early gene promoters. In reporter gene assays, XBP-1 alone was sufficient to activate the R promoter, whereas the combination of XBP-1 and protein kinase D (PKD) was required for efficient activation of the Z promoter. Most importantly, the expression of XBP-1 and activated PKD was sufficient to induce lytic viral gene expression in EBV-positive nasopharyngeal carcinoma cells and lymphoblastoid cells, while an XBP-1 small interfering RNA inhibited constitutive lytic EBV gene expression in lymphoblastoid cells. These results suggest that the plasma cell differentiation factor XBP-1, in combination with activated PKD, can mediate the reactivation of EBV, thereby allowing the viral life cycle to be intimately linked to plasma cell differentiation.


Subject(s)
DNA-Binding Proteins/physiology , Gene Expression Regulation, Viral/physiology , Genes, Viral , Herpesvirus 4, Human/genetics , Nuclear Proteins/physiology , Protein Kinase C/metabolism , Base Sequence , Calcium-Calmodulin-Dependent Protein Kinase Type 4 , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Line, Tumor , DNA Primers , Electrophoretic Mobility Shift Assay , Enzyme Activation , Herpesvirus 4, Human/physiology , Humans , RNA, Small Interfering , Regulatory Factor X Transcription Factors , Transcription Factors , Valproic Acid/pharmacology , Virus Activation/drug effects , Virus Latency , X-Box Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...