Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 319: 25-35, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32470463

ABSTRACT

The CRISPR-Cas9 system has been adapted for transcriptional activation (CRISPRa) and several second-generation CRISPRa systems (including VPR, SunTag, and SAM) have been developed to recruit different transcriptional activators to a deactivated Cas9, which is guided to a transcriptional start site via base complementarity with a target guide RNA. Multiple studies have shown the benefit of CRISPRa using plasmid or lentiviral expressed guide RNA, but the use of synthetic guide RNA has not been reported. Here we demonstrate the effective use of synthetic guide RNA for gene activation via CRISPRa. CRISPRa crRNA may be used with a canonical tracrRNA using the VPR or SunTag activation systems or with an extended tracrRNA containing an aptamer sequence for the SAM system. Transcriptional activation with synthetic crRNA:tracrRNA is comparable to activation achieved with expression vectors and combining several crRNA sequences targeting the same gene can enhance transcriptional activation. The use of synthetic crRNA is also ideal for simultaneous activation of multiple genes or use with dCas9-VPR mRNA when viral transduction is not feasible. Here, we perform a proof-of-principle arrayed screen using a CRISPRa crRNA library consisting of 153 cytokine receptor targets to identify regulators of IL-6 cytokine secretion. Together, these results demonstrate the suitability of synthetic CRISPRa guide RNA for high throughput, arrayed screening applications which allow for more complex phenotypic readouts to complement viability and drug resistance assays typically used in a pooled screening format.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, Kinetoplastida , Transcriptional Activation/genetics , Animals , Aptamers, Nucleotide/genetics , HEK293 Cells , Humans , Mice , NIH 3T3 Cells
2.
Biochemistry ; 56(21): 2651-2662, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28505413

ABSTRACT

The herpes helicase-primase (UL5-UL8-UL52) very inefficiently unwinds double-stranded DNA. To better understand the mechanistic consequences of this inefficiency, we investigated protein displacement activity by UL5-UL8-UL52, as well as the impact of coupling DNA synthesis by the herpes polymerase with helicase activity. While the helicase can displace proteins bound to the lagging strand template, bound proteins significantly impede helicase activity. Remarkably, UL5-UL8-UL52, an extremely inefficient helicase, disrupts the exceptionally tight interaction between streptavidin and biotin on the lagging strand template. It also unwinds DNA containing streptavidin bound to the leading strand template, although it does not displace the streptavidin. These data suggest that the helicase may largely or completely wrap around the lagging strand template, with minimal interactions with the leading strand template. We utilized synthetic DNA minicircles to study helicase activity coupled with the herpes polymerase-processivity factor (UL30-UL42). Coupling greatly enhances unwinding of DNA, although bound proteins still inhibit helicase activity. Surprisingly, while UL30-UL42 and two noncognate polymerases (Klenow Fragment and T4 DNA polymerase) all stimulate unwinding of DNA by the helicase, the isolated UL30 polymerase (i.e., no UL42 processivity factor) binds to the replication fork but in a manner that is incompetent in terms of coupled helicase-polymerase activity.


Subject(s)
DNA Helicases/metabolism , DNA Primase/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , Exodeoxyribonucleases/metabolism , Viral Proteins/metabolism
3.
J Org Chem ; 82(20): 10803-10811, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28282138

ABSTRACT

Small molecule/DNA hybrids (SMDHs) have been considered as nanoscale building blocks for engineering 2D and 3D supramolecular DNA assembly. Herein, we report an efficient on-bead amide-coupling approach to prepare SMDHs with multiple oligodeoxynucleotide (ODN) strands. Our method is high yielding under mild and user-friendly conditions with various organic substrates and homo- or mixed-sequenced ODNs. Metal catalysts and moisture- and air-free conditions are not required. The products can be easily analyzed by LC-MS with accurate mass resolution. We also explored nanometer-sized shape-persistent macrocycles as novel multitopic organic linkers to prepare SMDHs. SMDHs bearing up to six ODNs were successfully prepared through the coupling of arylenethynylene macrocycles with ODNs, which were used to mediate the assembly of gold nanoparticles.


Subject(s)
Amides/chemistry , DNA/chemistry , Small Molecule Libraries/chemistry , Molecular Structure , Oligodeoxyribonucleotides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...