Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38610536

ABSTRACT

Rising platemeters are commonly used in Ireland and New Zealand for managing intensive pastures. To assess the applicability of a commercial rising platemeter operating with a microsonic sensor to estimate herbage mass with its own equation, the objectives were (i) to validate the original equation; (ii) to identify possible factors hampering its accuracy and precision; and (iii) to develop a new equation for heterogeneous swards. A comprehensive dataset (n = 1511) was compiled on the pastures of dairy farms. Compressed sward heights were measured by the rising platemeter. Herbage mass was harvested to determine reference herbage availability. The adequacy of estimating herbage mass was assessed using root mean squared error (RMSE) and mean bias. As the adequacy of the original equation was low, a new equation was developed using multiple regression models. The mean bias and the RMSE for the new equation were overall low with 201 kg dry matter/ha and 34.6%, but it tended to overestimate herbage availability at herbage mass < 500 kg dry matter/ha and underestimate it at >2500 kg dry matter/ha. Still, the newly developed equation for the microsonic sensor-based rising platemeter allows for accurate and precise estimation of available herbage mass on pastures.


Subject(s)
Calibration , Farms , Ireland
2.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 423-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37990614

ABSTRACT

The present study aims at evaluating whether current semimechanistic models developed for temperate cattle systems can be adopted for cattle under (sub-) tropical husbandry systems to adequately (accurately and precisely) predict total nitrogen (TN), urine nitrogen (UN), faecal nitrogen (FN) excretion and its partition into different FN fractions. Selected models were built based on the feeding recommendations for ruminants of the British (Model A), German (Model G) and French (INRA; Model I) system. Model evaluation was conducted using eight nitrogen balance studies performed in El Salvador, Kenya and Peru (n = 392 individual observations including lactating cows, heifers and steers). Concordance correlation coefficient, root mean square errors (RMSE), and mean biases were estimated to evaluate the models' adequacy in predicting nitrogen excretion. Input variables causing greatest variation in nitrogen excretion prediction were identified by a sensitivity analysis and adjusted. Model G was able to adequately (i.e., RMSE of <25% of observed mean, systematic error of <5% of the mean square error) predict TN excretion through a compensation between overestimation of UN excretion and underestimation of FN excretion. None of the models were able to adequately predict UN, FN, and different FN fractions. Model I adequately predicted FN (RMSE = 18%) when duodenal microbial crude protein flow was increased, and the intercept used to predict FN excretion was reduced from 4.30 to 3.82 g of nitrogen per kilogram of dry matter intake. These adjustments, however, were not sufficient to predict adequately UN excretion (RMSE = 38%), individual FN fractions (RMSE > 56%), and TN (RMSE = 22%) excretion, by Model I.


Subject(s)
Body Fluids , Lactation , Cattle , Animals , Female , Diet/veterinary , Nitrogen/metabolism , Body Fluids/chemistry , Milk/chemistry
3.
Animals (Basel) ; 12(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36496920

ABSTRACT

The study aimed to evaluate the effects of ensiling length, storage temperature, and its interaction with crude protein (CP) levels in sorghum−soybean forage mixtures on in vitro rumen fermentation and post-ruminal digestibility of nutrients. The dietary treatments consisted of fresh forages (d 0) and silages of sorghum and soybean stored indoors or outdoors for 75 and 180 d with additional ingredients to make two dietary CP levels, 90 and 130 g/kg dry matter (DM) and a forage-to-concentrate ratio of 80 to 20. An in vitro procedure was conducted using the ANKOM RF technique to study rumen fermentation. The dietary treatments were incubated in duplicate for 8 and 24 h in three runs. After each incubation time, in vitro rumen fermentation parameters were measured, and the protozoa population was counted using a microscope. Post-ruminal digestibility was determined using the pepsin and pancreatic solubility procedure. Cumulative gas production (GP) increased quadratically with ensiling length (8 h, p < 0.01; 24 h, p = 0.02), and the GP differed between CP levels at both incubation times (p < 0.01). However, total short-chain fatty acid (SCFA) concentrations in rumen inoculum increased quadratically with ensiling length (p < 0.01; for both incubation times), and interaction between ensiling length and CP levels was observed in proportions of acetate and propionate after 24 h of incubation (p < 0.01; for both incubation times). Similarly, an interaction between ensiling length and CP levels was found in the proportion of valerate after 24 h of incubation (p < 0.01). There was a quadratic response to ensiling length in the NH4−N concentration after 8 h (p < 0.01) and 24 h (p < 0.05), and the CP level also differed (p < 0.01) at both incubation times. The ciliate protozoa count after 24 h was higher in low CP diets than in high CP diets (p = 0.04). The amount of CP in the undegraded substrate at both incubation times differed between CP levels (p < 0.01; for both incubation times). An interaction effect between ensiling length and storage temperature after 8 h (p = 0.02) and 24 h (p < 0.01) was observed for intestinal CP digestibility. The effect of CP levels on intestinal CP digestibility differed after 8 h (p < 0.01) and 24 h (p < 0.01). In conclusion, increasing ensiling length beyond 75 d reduced CP digestibility, and additional CP inclusion did not ameliorate this.

4.
PLoS One ; 17(11): e0276580, 2022.
Article in English | MEDLINE | ID: mdl-36367862

ABSTRACT

In the Anthropocene the consequences of land-use transformation on ecosystem services are of growing concern, particularly in fragile areas of mountain agriculture that often represent high nature-value farmland. This study uses a decadal repeated survey approach to analyse the effects of modernisation on oasis systems in the Jabal Al Akhdar region of northern Oman. This rugged mountain region at the north-eastern tip of the Arabian Peninsula experiences a growing influx of regional and international tourists since the opening of a modern highway 15 years ago. In 2007, at the onset of transformation processes, a survey was conducted with all households (HH) located in three major settlements along the 1000-m-altitude gradient of the Wadi Muaydin watershed. The survey was repeated in 2018, including all remaining HH of the three settlements. This longitudinal approach allowed studying the consequences of social-ecological transformation processes on crop and livestock husbandry, agricultural labour use, product marketing, and perception of the region's future by its local residents. Though the village inhabitants are aging and declining in numbers, they still adhere to agriculture, largely because of tradition and identity. Fallowing and abandoning farmland increased over the investigated time span but was paralleled by increased application of agrochemicals and animal manure on fields, purchase of roughage and concentrate feeds for small ruminants, concentration on cash crop and meat production for sale, and increased employment of migrant workers. These indicators of modernisation of oasis agriculture are accompanied by predominantly pessimistic views on future prospects of oasis farming. Commonly perceived problems are shortage of irrigation water and profound societal change. Against these challenges, value chain generation and direct marketing opportunities for local agricultural produce are seen as prerequisites to keep the high nature-value farmland of these mountain oases alive.


Subject(s)
Agriculture , Ecosystem , Animals , Oman , Farms , Livestock , Ruminants
5.
Animals (Basel) ; 12(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35625081

ABSTRACT

The aim was to analyze the effects of two cereal grains differing in nutritional composition and starch degradation characteristics and the timing of their supplementation on feed intake, rumen microbial protein synthesis (MPS), performance, and nitrogen use of lactating dairy cows grazing an alfalfa-ryegrass sward. Four dietary treatments were tested in 24 lactating Brown Swiss cows in an incomplete 4 × 3 Latin square design. Cows were supplemented with 3.5 kg/d (as-fed basis) of a corn-based or an oat-based concentrate mixture (CM), of which either the majority (2.5 vs. 1.0 kg/d) was offered before or after grazing. Feed intake was similar across diets, but the interaction between type of CM and timing of supplementation affected eating time (p = 0.010), milk protein (p = 0.013) and energy-corrected milk yields (p = 0.025), efficiency of rumen MPS (p = 0.094), and nitrogen use efficiency (p = 0.081). Most of these variables were greater when the majority of the corn-based CM was offered after grazing and the oat-based CM before grazing. Supplementing slowly degradable starch sources after and rapidly degradable starch sources before grazing may improve the efficiency of rumen MPS, milk performance, and nitrogen use efficiency in dairy cows grazing alfalfa-ryegrass swards.

6.
Sensors (Basel) ; 22(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35161714

ABSTRACT

In precision grazing, pasture allocation decisions are made continuously to ensure demand-based feed allowance and efficient grassland utilization. The aim of this study was to evaluate existing prediction models that determine feed scarcity based on changes in dairy cow behavior. During a practice-oriented experiment, two groups of 10 cows each grazed separate paddocks in half-days in six six-day grazing cycles. The allocated grazing areas provided 20% less feed than the total dry matter requirement of the animals for each entire grazing cycle. All cows were equipped with noseband sensors and pedometers to record their head, jaw, and leg activity. Eight behavioral variables were used to classify herbage sufficiency or scarcity using a generalized linear model and a random forest model. Both predictions were compared to two individual-animal and day-specific reference indicators for feed scarcity: reduced milk yields and rumen fill scores that undercut normal variation. The predictive performance of the models was low. The two behavioral variables "daily rumination chews" and "bite frequency" were confirmed as suitable predictors, the latter being particularly sensitive when new feed allocation is present in the grazing set-up within 24 h. Important aspects were identified to be considered if the modeling approach is to be followed up.


Subject(s)
Diet , Lactation , Animal Feed/analysis , Animals , Cattle , Dairying , Female , Milk , Rumen
8.
Animals (Basel) ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34679873

ABSTRACT

The objectives of the present study were (1) to assess the adequacy of the in vitro and chemical methods to predict post-ruminal crude protein supply (PRCP) from fresh tropical forage, and (2) to identify PRCP supply predictors. Twenty-three fresh forage grasses and 15 forage legumes commonly used in domestic cattle feeding in the tropics and subtropics were incubated in the rumen of cows to determine ruminal crude protein (CP) degradation. The PRCP supply was calculated from in situ rumen-undegraded CP and in vitro organic matter digestibility (i.e., reference method), from ammonia-nitrogen release during in vitro incubation (i.e., in vitro method), and from the concentrations of chemical CP fractions (i.e., chemical method). The adequacy was evaluated using error-index and dimensionless parameters, and stepwise regression was used to select PRCP predictors. Adequacy ranged from poor to moderate (0.53 to 0.74) for the in vitro method being lower for forage legumes at a slow rumen passage rate (0.20), and even poorer (0.02 to 0.13) for the chemical method. Hence, the in vitro method can estimate PRCP supply in tropical forages with moderate to high but not with slow passage rates. Equations developed in the present study appear to predict PRCP supply with reasonable adequacy.

9.
Animals (Basel) ; 11(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671605

ABSTRACT

Effects of feeding levels below maintenance requirements of metabolizable energy (MER) and of feed supplementation on fecal nutrient and microbial C concentrations were evaluated. In experiment 1, Rhodes grass hay only was offered to Boran steers at 80%, 60%, and 40% of individual MER, while steers at 100% MER additionally received a concentrated mixture. This reduction in MER decreased N, increased fungal C but did not affect bacterial C concentrations in feces. In experiment 2, Holstein × Boran heifers were offered a poor-quality roughage diet without supplement, with sweet potato vine silage or with a urea-molasses block. These two supplements did not affect the fecal chemical composition or fungal C but increased bacterial C concentrations in feces. Across all data, the fungal C/bacterial C ratio was positively related to N and negatively to neutral detergent fiber concentrations in feces, indicating diet-induced shifts in the fecal microbial community.

10.
Animals (Basel) ; 10(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397285

ABSTRACT

Ruminant livestock systems in the (Sub-)Tropics differ from those in temperate areas. Yet, simulation models used to study resource use and productive performance in (sub-)tropical cattle production systems were mostly developed using data that quantify and characterize biological processes and their outcomes in cattle kept in temperate regions. Ergo, we selected the LIVestock SIMulator (LIVSIM) model, modified its cattle growth and lactation modules, adjusted the estimation of the animals' metabolizable energy and protein requirements, and adopted a semi-mechanistic feed intake prediction model developed for (sub-)tropical stall-fed cattle. The original and modified LIVSIM were evaluated using a meta-dataset from stall-fed dairy cattle in Ethiopia, and the mean bias error (MBE), the root mean squared error of prediction (RMSEP), and the relative prediction error (RPE) were used to assess their accuracy. The modified LIVSIM provided more accurate predictions of voluntary dry matter intake, final body weights 140 days postpartum, and daily milk yields than the original LIVSIM, as shown by a lower MBE, RMSEP, and RPE. Therefore, using data that quantify and characterize biological processes from (sub-)tropical cattle production systems in simulation models used in the (Sub-)Tropics can considerably improve their accuracy.

11.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1325-1337, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31318115

ABSTRACT

The present study evaluated the effects of energetic undernutrition on liquid and solid digesta passage and on nutrient digestibility as well as their interdependencies. Using a 4 x 4 Latin square design, 12 growing Boran steers (183 ± 15.2 kg live weight) were allocated to four levels of metabolizable energy (ME) supply fixed at 100, 80, 60 and 40% of individual maintenance energy requirements (MER) during four experimental periods. Each period comprised three weeks of adaptation, two weeks of data collection and two weeks of recovery. Diets MER80, MER60 and MER40 only consisted of Rhodes grass hay (RGH), whereas diet MER100 contained (as fed) 83% RGH, 8% cotton seed meal and 9% sugarcane molasses. Feed intake differed between treatments (p < .001) and ranged from 40 ± 0.6 g dry matter (DM) per kg of metabolic weight (kg0.75 ) in MER40 to 81 ± 1.3 g DM in MER100. Digestibility of neutral and acid detergent fibre (NDF, ADF) was highest at MER80, whereas rumen retention time of liquid and solid digesta was longest at MER40. The correlation of rumen retention time of liquid and solid digesta with the digestibility of proximate diet components was weak but positive, whereas the correlation of liquid and solid rumen retention time with quantitative feed and nutrient intake was strong (p < .01) and negative. Our results suggest that tropical cattle are able to buffer a moderate energy deficit by prolonging rumen retention time of digesta and hence improve diet digestibility. Conversely, a severe energy deficit cannot be buffered by digestive adaptation mechanisms and will inevitably lead to productivity losses.


Subject(s)
Animal Feed , Cattle/physiology , Digestion/physiology , Gastrointestinal Contents/chemistry , Gastrointestinal Motility/physiology , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Energy Intake , Male , Nutrients
12.
J Anim Sci ; 97(9): 3727-3740, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31269214

ABSTRACT

Using empirical models to predict voluntary dry matter intake (VDMI) of cattle across production systems in the (Sub-)Tropics often yields VDMI estimates with low adequacy (i.e., accuracy and precision). Thus, we investigated whether semimechanistic conceptual mathematical models (CMM) developed for cattle in temperate areas could be adopted and adjusted to adequately predict VDMI of stall-fed cattle in the (Sub-)Tropics. The CMM of Conrad et al. (1964) (C1) and Mertens (1987) (M1) were identified and adopted for their simplicity in reflecting physicophysiological VDMI regulation. Both CMM use 2 equations that estimate the physiologically and physically regulated VDMI and retain the lower VDMI prediction as actual VDMI. Furthermore, C1 was modified by increasing the daily average fecal dry matter output from 0.0107 to 0.0116 kg/kg body weight, yielding the modified model C2. For M1, the daily neutral detergent fiber intake capacity was increased from 0.012 to 0.0135 kg/kg body weight and the daily metabolizable energy requirements for maintenance from 0.419 to 0.631 MJ/kg0.75 body weight, whereas the metabolizable energy requirements for gain was reduced from 32.5 to 24.3 MJ/kg body weight gain, yielding the modified model M2. Last, also the mean of the physically and physiologically regulated VDMI rather than the lower of both estimates was retained as actual VDMI to generate the models C3 (from C1), C4 (from C2), M3 (from M1), and M4 (from M2). The 8 CMM were then evaluated using a data set summarizing results from 52 studies conducted under (sub)tropical conditions. The mean bias, root mean square error of prediction (RMSEP) and concordance correlation coefficient (CCC) were used to evaluate adequacy and robustness of all CMM. The M4, C2, and C1 were the most adequate CMM [i.e., lowest mean biases (0.07, -0.22, and 0.14 kg/animal and day, respectively), RMSEP (1.62, 1.93, and 2.0 kg/animal and day, respectively), and CCC (0.91, 0.86, and 0.85, respectively)] and robust of the 8 CMM. Hence, CMM can adequately predict VDMI across diverse stall-fed cattle systems in the (Sub-)Tropics. Adjusting CMM to reflect the differences in feed quality and animal physiology under typical husbandry conditions in the (Sub-)Tropics and those in temperate areas improves the adequacy of their VDMI predictions.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Eating , Models, Theoretical , Animals , Body Weight , Diet/veterinary , Feces , Female , Male , Nutritional Requirements
13.
Animals (Basel) ; 9(5)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052306

ABSTRACT

Given their high nitrogen (N) concentration and low costs, sweet potato vine silage (SPVS) and urea-molasses blocks (UMB) are recommended supplements for tropical regions; therefore, they were investigated in this study. Six heifers were allocated to three diets: the roughage diet (R) consisted of wheat straw (0.61) and Rhodes grass hay (0.39; on dry matter (DM) basis); R + SPVS combined R (0.81) and SPVS (0.19); and with R + UMB animals had access to UMB. During two experimental periods, feed intake, feces and urine excretion, digesta passage, and rumen microbial protein synthesis were determined during seven days and methane emissions during three days. There was no treatment effect (p > 0.05) on DM and N intake. Apparent DM digestibility of R + SPVS (510 g/kg) was higher (p < 0.05) than of R (474 g/kg). Digesta passage and duodenal microbial N flow were similar for all diets (p > 0.05), while N retention was highest with R + SPVS (p > 0.05). Methane emissions per unit of digested feed (g CH4/kg dDM) were lower (p < 0.05) for R + SPVS (55.2) than for R (64.7). Hence, SPVS supplementation to poor-quality roughage has the potential to increase diet digestibility and N retention while reducing CH4 emissions.

14.
Arch Anim Nutr ; 73(2): 140-157, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784311

ABSTRACT

This study aimed at evaluating the effects of feed intake level on the efficiency of rumen microbial protein synthesis (EMPS), nitrogen (N) excretion, and N balance in twelve 18-months old Boran (Bos indicus) steers with initial average liveweight of 183 kg (standard deviation (SD) 15.2). The experiment followed a 4 × 4 complete Latin Square design with four dietary treatments tested in four periods. Each period ran for 5 weeks with 3 weeks of adaptation and 2 weeks of sample collection; separated by 2 weeks of re-feeding. Steers were fed at 100%, 80%, 60%, and 40% of their metabolisable energy requirement for maintenance (MER, referred to as MER100, MER80, MER60, and MER40, respectively). Steers receiving MER80, MER60, and MER40 were only fed Rhodes grass hay. MER100 steers were offered Rhodes grass hay at 80% of their MER and cottonseed meal and sugarcane molasses at each 10% of MER. Mean daily dry matter intake differed between treatments (p < 0.001) and ranged between 2.1 kg/animal (SD 0.13) in MER40 and 4.5 kg/animal (SD 0.31) in MER100. Urinary N excretion and N balance did not differ between MER80, MER60, and MER40. According to contrast test, declining feed intake level from MER80 to MER40 reduced duodenal microbial crude protein flow (p < 0.001), but did not alter the EMPS (g microbial N/kg digestible organic matter intake). Yet, if scaled to N intake, EMPS increased (p < 0.049), whereas total N and faecal N excretions decreased linearly with declining intake level (p < 0.001 for both variables). At similar grass hay intake, duodenal microbial crude protein flow was 41% higher in MER100 than in MER80 steers (p < 0.001). In cattle offered poor-quality tropical forage below their MER, the very low EMPS and thus microbial protein supply aggravate the negative effects of low dietary nutrient and energy intakes in periods of feed shortage.


Subject(s)
Animal Feed/analysis , Bacterial Proteins/metabolism , Cattle/physiology , Diet/veterinary , Nitrogen/metabolism , Animal Feed/standards , Animal Nutritional Physiological Phenomena , Animals , Bacteria/metabolism , Bacterial Proteins/genetics , Bottle Feeding , Energy Metabolism , Gene Expression Regulation, Bacterial/drug effects , Male , Random Allocation
15.
Asian-Australas J Anim Sci ; 32(5): 637-647, 2019 May.
Article in English | MEDLINE | ID: mdl-30056650

ABSTRACT

OBJECTIVE: The study aimed at quantifying seasonal and spatial variations in availability and nutritive value of herbaceous vegetation on native pastures and supplement feedstuffs for domestic ruminants in Western Kenya. METHODS: Samples of herbaceous pasture vegetation (n = 75) and local supplement feedstuffs (n = 46) for cattle, sheep, and goats were collected in 20 villages of three geographic zones (Highlands, Mid-slopes, Lowlands) in Lower Nyando, Western Kenya, over four seasons of one year. Concentrations of dry matter (DM), crude ash (CA), ether extract (EE), crude protein (CP), neutral detergent fibre (NDF), gross energy (GE), and minerals were determined. Apparent total tract organic matter digestibility (dOM) was estimated from in vitro gas production and proximate nutrient concentrations or chemical composition alone using published prediction equations. RESULTS: Nutrient, energy, and mineral concentrations were 52 to 168 g CA, 367 to 741 g NDF, 32 to 140 g CP, 6 to 45 g EE, 14.5 to 18.8 MJ GE, 7.0 to 54.2 g potassium, 0.01 to 0.47 g sodium, 136 to 1825 mg iron, and 0.07 to 0.52 mg selenium/kg DM. The dOM was 416 to 650 g/kg organic matter but differed depending on the estimation method. Nutritive value of pasture herbage was superior to most supplement feedstuffs, but its value strongly declined in the driest season. Biomass yields and concentrations of CP and potassium in pasture herbage were highest in the Highlands amongst the three zones. CONCLUSION: Availability and nutritive value of pasture herbage and supplement feedstuffs greatly vary between seasons and geographical zones, suggesting need for season- and region-specific feeding strategies. Local supplement feedstuffs partly compensate for nutritional deficiencies. However, equations to accurately predict dOM and improved knowledge on nutritional characteristics of tropical ruminant feedstuffs are needed to enhance livestock production in this and similar environments.

16.
J Anim Physiol Anim Nutr (Berl) ; 102(6): 1450-1463, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30099783

ABSTRACT

This study aimed to evaluate in vitro fermentation characteristics, microbial protein synthesis and microbial community composition when replacing maize silage (MS) with red clover silage (RCS) in total mixed rations (TMR) of dairy cows. Treatments included TMR containing forage (MS and RCS) and concentrates (0.75:0.25) with targeted proportions (dry matter (DM) basis) of RCS in TMR of 0.15 (RCS15 ), 0.30 (RCS30 ), 0.45 (RCS45 ), and 0.60 (RCS60 ), in substitution of MS. Samples of the TMR were incubated using the in vitro Ankom RF technique with a mixture of rumen fluid and buffer solution (1:2 v/v) for 8 and 24 hr. Gas production and total short-chain fatty acids concentration did not differ between diets, whereas ammonia-nitrogen concentration increased with increasing level of RCS. Acetate proportion was not affected by RCS level, but propionate showed a linear increase with increasing level of RCS at the expenses of butyrate. Branched fatty acids proportions linearly declined, reflecting a reduced deamination of true protein. Gene copy numbers of protozoa linearly decreased with increasing RCS levels, while total numbers of bacteria and methanogens were not affected by diet. The amylolytic bacteria Ruminobacter amylophillus and Prevotella bryantii showed evidence to increase with higher RCS levels after 8 hr and 24 hr, respectively, whereas no effects of diet where observed for the fibrolytic bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes. Concentrations of purine bases, and total N production in liquid-associated microbes declined with increasing RCS levels, suggesting a negative impact of this feed on microbial growth. The findings of this study suggest that in general, microbial protein synthesis might be impaired by the substitution of MS by RCS, therefore caution should be taken when formulating diets for dairy cows using high levels of RCS as ingredient.


Subject(s)
Bacteria/metabolism , Rumen/physiology , Silage/analysis , Trifolium/chemistry , Zea mays/chemistry , Animals , Digestion , Fermentation , Protein Biosynthesis/physiology
17.
J Anim Sci ; 96(5): 1939-1951, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29617812

ABSTRACT

The effect of an exogenous amylase on postruminal digestion of starch infused into the abomasum of cattle was studied. Four rumen-cannulated heifers were fed 5.5 kg DM/d of a diet without starch, and assigned randomly to a crossover design. The experiment consisted of 2 periods lasting 23 d each with 10 d for adaptation to the diet followed by 13 d of abomasal infusion and sample collection. During the first 3 d of each infusion phase, isotonic saline solution was infused (1 liter/h) for measurement of baseline values in feces, followed by daily infusions of 880 g DM corn starch (1 kg/10 liters of water) without or with the addition of 2% of amylase. Titanium dioxide (10 g/d) was ruminally administered for estimation of fecal excretion. Digestion of starch in small intestine was calculated as the difference between the amounts of infused starch, disappeared from hindgut and fecal excretion. The apparent disappearance of starch from the hindgut was estimated based on the increment of microbial nitrogen (N) excretion due to starch infusion (1 g microbial N/100 g fermented starch) compared to baseline values. The concentration of purine bases in feces was used to estimate excretion of microbial N. Microbial N excretion increased with starch infusion (P < 0.05) but was not influenced by amylase (P = 0.81). Starch disappearance from the small intestine was not improved by amylase (P = 0.78) and averaged 85%. Amylase affected neither blood concentration of glucose (P = 0.80) nor of insulin (P = 0.26), but glucagon was lower without (P < 0.0001) than with amylase. The infusion of starch increased fecal excretion of total VFA (acetate, propionate, and butyrate) by 53% (P < 0.05), which indicates increased carbohydrate fermentation in the hindgut and incomplete digestion of starch in the small intestine. However, the excretion of total VFA was not affected by amylase (P = 0.66). Lactate excretion was higher at the second day of starch infusion (P < 0.05) without than with amylase, which suggests lower flow of starch from the small intestine to the hindgut due to a possible effect of amylase addition in animals not adapted to starch digestion. However, lactate excretion returned near to baseline values within 2 d, which was probably due to increase of lactate-utilizing bacteria and the adaptation of the microbial population in the hindgut. Further studies with higher starch levels and addition of amylase are recommended.


Subject(s)
Amylases/administration & dosage , Cattle/physiology , Nitrogen/metabolism , Starch/metabolism , Abomasum/metabolism , Animals , Blood Glucose/analysis , Cattle/microbiology , Diet/veterinary , Digestion/drug effects , Fatty Acids, Volatile/analysis , Feces/chemistry , Feces/microbiology , Female , Fermentation/drug effects , Purines , Random Allocation , Rumen/drug effects , Rumen/metabolism , Rumen/microbiology
18.
J Dairy Sci ; 100(8): 6229-6238, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28551180

ABSTRACT

The aim of this study was to examine the capacity of quebracho tannin extract (QTE) to modulate the fatty acid (FA) profile in the milk fat of cows. Fifty Holstein cows yielding 33.2 ± 8.2 kg/d of milk were divided into 2 groups. The cows were fed a basal diet with a forage-concentrate ratio of 66:34 on a dry matter (DM) basis. Diets tested were control (CON, basal diet without QTE) and basal diet plus 15 or 30 g of QTE/kg of DM (QTE15 and QTE30, respectively). Two treatments could be tested simultaneously and were arranged along 6 periods. The milk FA profile was characterized by increments in the proportion of linoleic (LA) and α-linolenic acid (α-LNA) (QTE15 = 10 and 6.1%; QTE30 = 28 and 25%, respectively) compared to CON, which might indicate reduced ruminal biohydrogenation (BH) of both dietary LA and α-LNA. Vaccenic acid (VA) in the milk fat was reduced (QTE15 8.9% and QTE30 12%) compared to CON, which may be linked to inhibited BH of LA and α-LNA. Rumenic acid (RA), a conjugated LA (cis-9,trans-11 conjugated linoleic acid) and an important human health promoter, was unfortunately decreased (QTE15 8.3% and QTE30 16%) in the milk compared with CON, probably because of inhibited ruminal BH of LA. However, reduced RA in the milk was probably due to reduced availability of VA produced in the rumen and the consequently low VA available to be desaturated to RA in the mammary gland by Δ9-desaturase. The proportions of total polyunsaturated FA were increased with QTE15 and QTE30 by 4.7 and 15% compared to CON, respectively, and the long-chain FA proportions were also increased (QTE15 2.0% and QTE30 8.2%). Moreover, myristic and palmitic acid were reduced by QTE30 (9.6 and 3.3%, respectively) compared to CON, which also contributed to increasing the nutritional quality of milk because they are recognized to increase high-density lipoprotein in humans. Branched-chain FA in milk was reduced with QTE treatments, which indicates inhibited ruminal BH and microbial activity. In general, our findings suggest that dietary QTE have the potential to modulate FA profile of milk fat, and this effect is dosage dependent. Because QTE influenced the FA profile of milk fat both positively and negatively, further research is needed before concluding that QTE may improve the nutritional quality of cow milk fat in human diets.


Subject(s)
Cattle/metabolism , Milk/chemistry , Tannins/pharmacology , Animals , Diet/veterinary , Digestion , Fatty Acids , Female , Lactation , Milk/drug effects , Rumen
19.
Arch Anim Nutr ; 71(1): 37-53, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27830586

ABSTRACT

The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE15 (basal diet with QTE at 15 g/kg DM) and QTE30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE30, whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE15 and QTE30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE15 and QTE30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE15. While there was no effect of Diet QTE15, treatment QTE30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.


Subject(s)
Anacardiaceae/chemistry , Animal Nutritional Physiological Phenomena/drug effects , Cattle/physiology , Feeding Behavior/drug effects , Tannins/administration & dosage , Animal Feed/analysis , Animals , Diet/veterinary , Digestion/drug effects , Dose-Response Relationship, Drug , Duodenum/drug effects , Duodenum/physiology , Female , Fermentation/drug effects , Lactation , Milk/chemistry , Milk/metabolism , Nitrogen/metabolism , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Purines/urine , Tannins/chemistry
20.
Arch Anim Nutr ; 70(4): 307-21, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27161670

ABSTRACT

Under irrigated arid conditions, organic fertiliser rich in slowly decomposable nitrogen (N) and carbon (C) is needed for soil fertility maintenance. Feeding ruminants with condensed tannins will lower ruminal protein degradation, reduce urinary N excretion and might increase the faecal fraction of slowly decomposable N. Supplementation with activated charcoal (AC) might enrich manure with slowly degrading C. Therefore, we investigated the effects of feeding quebracho tannin extract (QTE) and AC on the N balance of goats, the efficiency of microbial protein synthesis in the rumen (EMPS) and the composition of faeces. The feeding trial comprised three periods; in each period, 12 male Boer goats (28 ± 3.9 kg live weight) were assigned to six treatments: a Control diet (per kg diet 500 g grass hay and 500 g concentrate) and to further five treatments the Control diet was supplemented with QTE (20 g and 40 g/kg; diets QTE2 and QTE4, respectively), with AC (15 g and 30 g/kg, diets AC1.5 and AC3.0, respectively) and a mixture of QTE (20 g/kg) plus AC (15 g/kg) (diet QTEAC). In addition to the N balance, EMPS was calculated from daily excretions of purine derivatives, and the composition of faecal N was determined. There was no effect of QTE and AC supplementation on the intake of organic matter (OM), N and fibre, but apparent total tract digestibility of OM was reduced (p = 0.035). Feeding QTE induced a shift in N excretion from urine to faeces (p ≤ 0.001) without altering N retention. Total N excretion tended to decrease with QTE treatments (p = 0.053), but EMPS was not different between treatments. Faecal C excretion was higher in QTE and AC treatments (p = 0.001) compared with the Control, while the composition of faecal N differed only in concentration of undigested dietary N (p = 0.001). The results demonstrate that QTE can be included into diets of goats up to 40 g/kg, without affecting N utilisation, but simultaneously increasing the excretion of slowly decomposable N and C fractions. Feeding AC up to 30 g/kg of the diet increases slowly degradable faecal C concentration, without negative effects on N metabolism of goats.


Subject(s)
Anacardiaceae/chemistry , Animal Nutritional Physiological Phenomena , Charcoal/metabolism , Digestion , Goats/physiology , Plant Extracts/metabolism , Tannins/metabolism , Animals , Carbon/urine , Charcoal/administration & dosage , Dietary Supplements/analysis , Feces/chemistry , Gastrointestinal Microbiome , Goats/growth & development , Male , Manure/analysis , Nitrogen/metabolism , Nitrogen/urine , Plant Extracts/administration & dosage , Proteins/metabolism , Rumen/metabolism , Rumen/microbiology , Tannins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...