Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Commun ; 14(1): 2567, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142569

ABSTRACT

Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development. Here, we apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to the chemical mapping of the developing maize root. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examine tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, we find evidence that elements of the TCA cycle are enriched in developmentally opposing regions. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the developmental effects of certain TCA metabolites on stem cell behavior do not correlate with changes in ATP production. These results present insights into development and suggest practical means for controlling plant growth.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tricarboxylic Acids , Spectrometry, Mass, Electrospray Ionization/methods , Citric Acid Cycle , Diagnostic Imaging , Growth and Development
2.
Curr Opin Plant Biol ; 74: 102382, 2023 08.
Article in English | MEDLINE | ID: mdl-37210789

ABSTRACT

Over recent years, our understanding of the tricarboxylic acid cycle (TCAC) in living organisms has expanded beyond its canonical role in cellular energy production. In plants, TCAC metabolites and related enzymes have important roles in physiology, including vacuolar function, chelation of metals and nutrients, photorespiration, and redox regulation. Research in other organisms, including animals, has demonstrated unexpected functions of the TCAC metabolites in a number of biological processes, including signaling, epigenetic regulation, and cell differentiation. Here, we review the recent progress in discovery of non-canonical roles of the TCAC. We then discuss research on these metabolites in the context of plant development, with a focus on research related to tissue-specific functions of the TCAC. Additionally, we review research describing connections between TCAC metabolites and phytohormone signaling pathways. Overall, we discuss the opportunities and challenges in discovering new functions of TCAC metabolites in plants.


Subject(s)
Citric Acid Cycle , Epigenesis, Genetic , Animals , Plants/metabolism , Plant Growth Regulators/metabolism , Plant Development
3.
Methods Enzymol ; 674: 481-495, 2022.
Article in English | MEDLINE | ID: mdl-36008017

ABSTRACT

Apocarotenoids are bioactive metabolites found in animals, fungi and plants. Several carotenoid-derived compounds, apocarotenoids, were recently identified as new growth regulators in different plant species. Here, we introduce basic chemical screening methods, using a model plant, Arabidopsis thaliana, to elucidate the function of bioactive apocarotenoids in determining plant phenotypic traits. These short guidelines include essential practices, such as selecting the plant growth conditions and the type of treatment, as well as phenotyping methodologies for the initial screening of novel apocarotenoid plant growth regulators.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Carotenoids/metabolism , Fungi/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plants/metabolism
4.
Methods Enzymol ; 671: 421-433, 2022.
Article in English | MEDLINE | ID: mdl-35878988

ABSTRACT

Retinoid-binding proteins (RBPs) are a diverse category of proteins that have been most extensively characterized for their role in vertebrate development. Recent work has uncovered new functions of RBPs in invertebrates and plants. Here, we present a methodology for applying a fluorescent chemical probe to characterize RBP binding in plants. This reporter, called merocyanine aldehyde (MCA), fluoresces upon binding to RBPs and therefore enables in vivo investigations into their functions with high spatio-temporal resolution. MCA treatment is simple, fast, non-destructive, and does not require prior knowledge of the RBP encoding genes. Therefore, a major advantage of this methodology is that it can be performed in species that are not genetically tractable. Furthermore, many of the methods presented here apply to diverse species within and beyond the plant kingdom.


Subject(s)
Retinaldehyde , Retinol-Binding Proteins , Benzopyrans , Indoles , Plants/genetics , Plants/metabolism , Protein Binding , Retinaldehyde/metabolism , Retinol-Binding Proteins/metabolism
5.
Science ; 373(6562): 1532-1536, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34446443

ABSTRACT

In Arabidopsis, de novo organogenesis of lateral roots is patterned by an oscillatory mechanism called the root clock, which is dependent on unidentified metabolites. To determine whether retinoids regulate the root clock, we used a chemical reporter for retinaldehyde (retinal)­binding proteins. We found that retinal binding precedes the root clock and predicts sites of lateral root organogenesis. Application of retinal increased root clock oscillations and promoted lateral root formation. Expression of an Arabidopsis protein with homology to vertebrate retinoid-binding proteins, TEMPERATURE INDUCED LIPOCALIN (TIL), oscillates in the region of retinal binding to the reporter, confers retinal-binding activity in a heterologous system, and, when mutated, decreases retinal sensitivity. These results demonstrate a role for retinal and its binding partner in lateral root organogenesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Lipocalins/metabolism , Plant Roots/growth & development , Retinaldehyde/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Fluorescence , Lipocalins/chemistry , Lipocalins/genetics , Meristem/metabolism , Mutation , Organogenesis, Plant , Plant Roots/metabolism , Protein Binding , Pyrimidinones/metabolism , Retinaldehyde/pharmacology , Signal Transduction
6.
Sci Adv ; 5(11): eaaw6787, 2019 11.
Article in English | MEDLINE | ID: mdl-31807696

ABSTRACT

Anchor roots (ANRs) arise at the root-shoot junction and are the least investigated type of Arabidopsis root. Here, we show that ANRs originate from pericycle cells in an auxin-dependent manner and a carotenogenic signal to emerge. By screening known and assumed carotenoid derivatives, we identified anchorene, a presumed carotenoid-derived dialdehyde (diapocarotenoid), as the specific signal needed for ANR formation. We demonstrate that anchorene is an Arabidopsis metabolite and that its exogenous application rescues the ANR phenotype in carotenoid-deficient plants and promotes the growth of normal seedlings. Nitrogen deficiency resulted in enhanced anchorene content and an increased number of ANRs, suggesting a role of this nutrient in determining anchorene content and ANR formation. Transcriptome analysis and treatment of auxin reporter lines indicate that anchorene triggers ANR formation by modulating auxin homeostasis. Together, our work reveals a growth regulator with potential application to agriculture and a new carotenoid-derived signaling molecule.


Subject(s)
Arabidopsis/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant/physiology , Plant Roots/metabolism , Plant Shoots/metabolism , Signal Transduction/physiology , Arabidopsis/genetics , Gene Expression Profiling , Indoleacetic Acids/metabolism , Plant Roots/genetics , Plant Shoots/genetics
7.
Proc Natl Acad Sci U S A ; 116(21): 10563-10567, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31068462

ABSTRACT

Natural compounds capable of increasing root depth and branching are desirable tools for enhancing stress tolerance in crops. We devised a sensitized screen to identify natural metabolites capable of regulating root traits in Arabidopsis ß-Cyclocitral, an endogenous root compound, was found to promote cell divisions in root meristems and stimulate lateral root branching. ß-Cyclocitral rescued meristematic cell divisions in ccd1ccd4 biosynthesis mutants, and ß-cyclocitral-driven root growth was found to be independent of auxin, brassinosteroid, and reactive oxygen species signaling pathways. ß-Cyclocitral had a conserved effect on root growth in tomato and rice and generated significantly more compact crown root systems in rice. Moreover, ß-cyclocitral treatment enhanced plant vigor in rice plants exposed to salt-contaminated soil. These results indicate that ß-cyclocitral is a broadly effective root growth promoter in both monocots and eudicots and could be a valuable tool to enhance crop vigor under environmental stress.


Subject(s)
Aldehydes/pharmacology , Diterpenes/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Arabidopsis
8.
Integr Biol (Camb) ; 7(4): 392-401, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25786072

ABSTRACT

Sphingosine-1-phosphate (S1P), a lipid second messenger formed upon phosphorylation of sphingosine by sphingosine kinase (SK), plays a crucial role in natural killer (NK) cell proliferation, migration, and cytotoxicity. Dysregulation of the S1P pathway has been linked to a number of immune system disorders and therapeutic manipulation of the pathway has been proposed as a method of disease intervention. However, peripheral blood NK cells, as identified by surface markers (CD56(+)CD45(+)CD3(-)CD16) consist of a highly diverse population with distinct phenotypes and functions and it is unknown whether the S1P pathway is similarly diverse across peripheral blood NK cells. In this work, we measured the phosphorylation of sphingosine-fluorescein (SF) and subsequent metabolism of S1P fluorescein (S1PF) to form hexadecanoic acid fluorescein (HAF) in 111 single NK cells obtained from the peripheral blood of four healthy human subjects. The percentage of SF converted to S1PF or HAF was highly variable amongst the cells ranging from 0% to 100% (S1PF) and 0% to 97% (HAF). Subpopulations of cells with varying levels of S1PF formation and metabolism were readily identified. Across all subjects, the average percentage of SF converted to S1PF or HAF was 37 ± 36% and 12 ± 19%, respectively. NK cell metabolism of SF by the different subjects was also distinct with hierarchical clustering suggesting two possible phenotypes: low (<20%) or high (>50%) producers of S1PF. The heterogeneity of SK and downstream enzyme activity in NK cells may enable NK cells to respond effectively to a diverse array of pathogens as well as incipient tumor cells. NK cells from two subjects were also loaded with S1PF to assess the activity of S1P phosphatase (S1PP), which converts S1P to sphingosine. No NK cells (n = 41) formed sphingosine, suggesting that S1PP was minimally active in peripheral blood NK cells. In contrast to the SK activity, S1PP activity was homogeneous across the peripheral blood NK cells, suggesting a bias in the SK pathway towards proliferation and migration, activities supported by S1P.


Subject(s)
Killer Cells, Natural/enzymology , Phosphotransferases (Alcohol Group Acceptor)/blood , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Cells, Cultured , Enzyme Activation , Humans
9.
Anal Bioanal Chem ; 406(27): 7027-36, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24980601

ABSTRACT

Sphingosine kinase (SK) is a promising therapeutic target in a number of cancers, including leukemia. Traditionally, SK has been measured in bulk cell lysates, but this technique obscures the cellular heterogeneity present in this pathway. For this reason, SK activity was measured in single cells loaded with a fluorescent sphingosine reporter. An automated capillary electrophoresis (CE) system enabled rapid separation and quantification of the phosphorylated and nonphosphorylated sphingosine reporter in single cells. SK activity was measured in tissue-cultured cells derived from chronic myelogenous leukemia (K562), primary peripheral blood mononuclear cells (PBMCs) from three patients with different forms of leukemia, and enriched leukemic blasts from a patient with acute myeloid leukemia (AML). Significant intercellular heterogeneity existed in terms of the degree of reporter phosphorylation (as much as an order of magnitude difference), the amount of reporter uptake, and the metabolites formed. In K562 cells, the average amount of reporter converted to the phosphorylated form was 39 ± 26% per cell. Of the primary PBMCs analyzed, the average amount of phosphorylated reporter was 16 ± 25%, 11 ± 26%, and 13 ± 23% in a chronic myelogenous leukemia (CML) patient, an AML patient, and a B-cell acute lymphocytic leukemia (B-ALL) patient, respectively. These experiments demonstrated the challenge of studying samples comprised of multiple cell types, with tumor blasts present at 5 to 87% of the cell population. When the leukemic blasts from a fourth patient with AML were enriched to 99% of the cell population, 19 ± 36% of the loaded sphingosine was phosphorylated. Thus, the diversity in SK activity remained even in a nearly pure tumor sample. These enriched AML blasts loaded significantly less reporter (0.12 ± 0.2 amol) relative to that loaded into the PBMCs in the other samples (≥1 amol). The variability in SK signaling may have important implications for SK inhibitors as therapeutics for leukemia and demonstrates the value of single-cell analysis in characterizing the nature of oncogenic signaling in cancer.


Subject(s)
Leukemia/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Electrophoresis, Capillary , Humans , K562 Cells
10.
Integr Biol (Camb) ; 6(2): 164-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413844

ABSTRACT

Single-cell methodologies are revealing cellular heterogeneity in numerous biological processes and pathologies. For example, cancer cells are characterized by substantial heterogeneity in basal signaling and in response to perturbations, such as drug treatment. In this work, we examined the response of 678 individual U937 (human acute myeloid leukemia) cells to an aminopeptidase-inhibiting chemotherapeutic drug (Tosedostat) over the course of 95 days. Using a fluorescent reporter peptide and a microfluidic device, we quantified the rate of reporter degradation as a function of dose. While the single-cell measurements reflected ensemble results, they added a layer of detail by revealing unique degradation patterns and outliers within the larger population. Regression modeling of the data allowed us to quantitatively explore the relationships between reporter loading, incubation time, and drug dose on peptidase activity in individual cells. Incubation time was negatively correlated with the number of peptide fragment peaks observed, while peak area (which was proportional to reporter loading) was positively correlated with both the number of fragment peaks observed and the degradation rate. Notably, a statistically significant change in the number of peaks observed was identified as dose increased from 2 to 4 µM. Similarly, a significant difference in degradation rate as a function of reporter loading was observed for doses ≥2 µM compared to the 1 µM dose. These results suggest that additional enzymes may become inhibited at doses >1 µM and >2 µM, demonstrating the utility of single-cell data to yield novel biological hypotheses.


Subject(s)
Glycine/analogs & derivatives , Hydroxamic Acids/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Glycine/administration & dosage , Glycine/pharmacology , Humans , Hydroxamic Acids/administration & dosage , Leukemia, Myeloid, Acute/enzymology , Longitudinal Studies , Microscopy, Fluorescence , Protease Inhibitors/administration & dosage , Regression Analysis , U937 Cells
11.
Anal Chem ; 85(9): 4797-804, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23527995

ABSTRACT

Capillary electrophoresis (CE) is a promising technique for single-cell analysis, but its use in biological studies has been limited by low throughput. This paper presents an automated platform employing microfabricated cell traps and a three-channel system for rapid buffer exchange for fast single-cell CE. Cells loaded with fluorescein and Oregon green were analyzed at a throughput of 3.5 cells/min with a resolution of 2.3 ± 0.6 for the fluorescein and Oregon green. Cellular protein kinase B (PKB) activity, as measured by immunofluorescence staining of phospho-PKB, was not altered, suggesting that this stress-activated kinase was not upregulated during the CE experiments and that basal cell physiology was not perturbed prior to cell lysis. The activity of sphingosine kinase (SK), which is often upregulated in cancer, was measured in leukemic cells by loading a sphingosine-fluorescein substrate into cells. Sphingosine fluorescein (SF), sphingosine-1-phosphate fluorescein (S1PF), and a third fluorescent species were identified in single cells. A single-cell throughput of 2.1 cells/min was achieved for 219 total cells. Eighty-eight percent of cells possessed upregulated SK activity, although subpopulations of cells with markedly different SK activity relative to that of the population average were readily identified. This system was capable of stable and reproducible separations of biological compounds in hundreds of adherent and nonadherent cells, enabling measurements of previously uncharacterized biological phenomena.


Subject(s)
Automation , Single-Cell Analysis , Animals , Electrophoresis, Capillary , PC12 Cells , Rats , Tumor Cells, Cultured
13.
J Phys Chem B ; 114(5): 1888-96, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20088483

ABSTRACT

Optical polarization, absorption, and scattering studies along with confocal microscopy reveal that Benzopurpurin 4B forms aggregates of micrometer size at very low concentrations in aqueous solution. A chromonic liquid crystal phase is stable at room temperature down to concentrations as low as 0.4 wt %, which can only be possible if the aggregates contain an ample amount of water. The kinetics of aggregate formation are extremely slow, with changes going on for days before equilibrium is reached. The stacking free energy change is estimated to be 10.3 +/- 0.4 k(B)T, which is in the higher range of values for recently studied chromonic liquid crystals. However, the very low concentration of the liquid crystal phase puts it in a different class, probably more similar to Scheibe or Jelly aggregates than the typical chromonic systems that are formed by simple stacks of molecules.


Subject(s)
Naphthalenesulfonates/chemistry , Kinetics , Liquid Crystals/chemistry , Liquid Crystals/ultrastructure , Scattering, Radiation , Temperature , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...