Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Bioeng Biotechnol ; 10: 833698, 2022.
Article in English | MEDLINE | ID: mdl-36051578

ABSTRACT

The pathogen transmitting Aedes albopictus mosquito is spreading rapidly in Europe, putting millions of humans and animals at risk. This species is well-established in Albania since its first detection in 1979. The sterile insect technique (SIT) is increasingly gaining momentum worldwide as a component of area-wide-integrated pest management. However, estimating how the sterile males will perform in the field and the size of target populations is crucial for better decision-making, designing and elaborating appropriate SIT pilot trials, and subsequent large-scale release strategies. A mark-release-recapture (MRR) experiment was carried out in Albania within a highly urbanized area in the city of Tirana. The radio-sterilized adults of Ae. albopictus Albania strain males were transported by plane from Centro Agricoltura Ambiente (CAA) mass-production facility (Bologna, Italy), where they were reared. In Albania, sterile males were sugar-fed, marked with fluorescent powder, and released. The aim of this study was to estimate, under field conditions, their dispersal capacity, probability of daily survival and competitiveness, and the size of the target population. In addition, two adult mosquito collection methods were also evaluated: BG-Sentinel traps baited with BG-Lure and CO2, (BGS) versus human landing catch (HLC). The overall recapture rates did not differ significantly between the two methods (2.36% and 1.57% of the total male released were recaptured respectively by BGS and HLC), suggesting a similar trapping efficiency under these conditions. Sterile males traveled a mean distance of 93.85 ± 42.58 m and dispersed up to 258 m. Moreover, they were observed living in the field up to 15 days after release with an average life expectancy of 4.26 ± 0.80 days. Whether mosquitoes were marked with green, blue, yellow, or pink, released at 3.00 p.m. or 6.00 p.m., there was no significant difference in the recapture, dispersal, and survival rates in the field. The Fried competitiveness index was estimated at 0.28. This mark-release-recapture study provided important data for better decision-making and planning before moving to pilot SIT trials in Albania. Moreover, it also showed that both BG-traps and HLC were successful in monitoring adult mosquitoes and provided similar estimations of the main entomological parameters needed.

2.
PLoS Negl Trop Dis ; 15(11): e0009989, 2021 11.
Article in English | MEDLINE | ID: mdl-34843478

ABSTRACT

BACKGROUND: Glossina austeni and Glossina brevipalpis (Diptera: Glossinidae) are the sole cyclical vectors of African trypanosomes in South Africa, Eswatini and southern Mozambique. These populations represent the southernmost distribution of tsetse flies on the African continent. Accurate knowledge of infested areas is a prerequisite to develop and implement efficient and cost-effective control strategies, and distribution models may reduce large-scale, extensive entomological surveys that are time consuming and expensive. The objective was to develop a MaxEnt species distribution model and habitat suitability maps for the southern tsetse belt of South Africa, Eswatini and southern Mozambique. METHODOLOGY/PRINCIPAL FINDINGS: The present study used existing entomological survey data of G. austeni and G. brevipalpis to develop a MaxEnt species distribution model and habitat suitability maps. Distribution models and a checkerboard analysis indicated an overlapping presence of the two species and the most suitable habitat for both species were protected areas and the coastal strip in KwaZulu-Natal Province, South Africa and Maputo Province, Mozambique. The predicted presence extents, to a small degree, into communal farming areas adjacent to the protected areas and coastline, especially in the Matutuíne District of Mozambique. The quality of the MaxEnt model was assessed using an independent data set and indicated good performance with high predictive power (AUC > 0.80 for both species). CONCLUSIONS/SIGNIFICANCE: The models indicated that cattle density, land surface temperature and protected areas, in relation with vegetation are the main factors contributing to the distribution of the two tsetse species in the area. Changes in the climate, agricultural practices and land-use have had a significant and rapid impact on tsetse abundance in the area. The model predicted low habitat suitability in the Gaza and Inhambane Provinces of Mozambique, i.e., the area north of the Matutuíne District. This might indicate that the southern tsetse population is isolated from the main tsetse belt in the north of Mozambique. The updated distribution models will be useful for planning tsetse and trypanosomosis interventions in the area.


Subject(s)
Glossinidae/physiology , Insect Control/methods , Insect Vectors/physiology , Animal Distribution , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/transmission , Ecosystem , Eswatini/epidemiology , Glossinidae/classification , Insect Vectors/classification , Mozambique/epidemiology , South Africa/epidemiology
3.
Proc Biol Sci ; 288(1944): 20202810, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33529565

ABSTRACT

Spatio-temporally heterogeneous environments may lead to unexpected population dynamics. Knowledge is needed on local properties favouring population resilience at large scale. For pathogen vectors, such as tsetse flies transmitting human and animal African trypanosomosis, this is crucial to target management strategies. We developed a mechanistic spatio-temporal model of the age-structured population dynamics of tsetse flies, parametrized with field and laboratory data. It accounts for density- and temperature-dependence. The studied environment is heterogeneous, fragmented and dispersal is suitability-driven. We confirmed that temperature and adult mortality have a strong impact on tsetse populations. When homogeneously increasing adult mortality, control was less effective and induced faster population recovery in the coldest and temperature-stable locations, creating refuges. To optimally select locations to control, we assessed the potential impact of treating them and their contribution to the whole population. This heterogeneous control induced a similar population decrease, with more dispersed individuals. Control efficacy was no longer related to temperature. Dispersal was responsible for refuges at the interface between controlled and uncontrolled zones, where resurgence after control was very high. The early identification of refuges, which could jeopardize control efforts, is crucial. We recommend baseline data collection to characterize the ecosystem before implementing any measures.


Subject(s)
Trypanosomiasis, African , Tsetse Flies , Animals , Ecosystem , Humans , Insect Vectors , Population Dynamics
4.
Wellcome Open Res ; 5: 157, 2020.
Article in English | MEDLINE | ID: mdl-33437875

ABSTRACT

Background: Open data on the locations and services provided by health facilities have, in some countries, allowed the development of software tools contributing to COVID-19 response. The UN and WHO encourage countries to make health facility location data open, to encourage use and improvement. We provide a summary of open access health facility location data in Africa using re-useable R code. We aim to support data analysts developing software tools to address COVID-19 response in individual countries. In Africa there are currently three main sources of such open data; 1) direct from national ministries of health, 2) a database for sub-Saharan Africa collated and published by a team from KEMRI-Wellcome Trust Research Programme and now hosted by WHO, and 3) The Global Healthsites Mapping Project in collaboration with OpenStreetMap.      Methods: We searched for and documented official national facility location data that were openly available. We developed re-useable open-source R code to summarise and visualise facility location data by country from the three sources. This re-useable code is used to provide a web user interface allowing data exploration through maps and plots of facility type. Results: Out of 52 African countries, seven currently provide an official open facility list that can be downloaded and analysed reproducibly. Considering all three sources, there are over 185,000 health facility locations available for Africa. However, there are differences and overlaps between sources and a lack of data on capacities and service provision. Conclusions: These summaries and software tools can be used to encourage greater use of existing health facility location data, incentivise further improvements in the provision of those data by national suppliers, and encourage collaboration within wider data communities. The tools are a part of the afrimapr project, actively developing R building blocks to facilitate the use of health data in Africa.

5.
Parasit Vectors ; 11(1): 270, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703229

ABSTRACT

BACKGROUND: Tsetse flies are the sole vectors of human and animal trypanosomosis. In Burkina Faso, a project aiming to create zones free of tsetse flies and trypanosomosis was executed from June 2006 to December 2013. After the determination of tsetse distribution in the intervention area from December 2007 to November 2008, the control campaign was launched in November 2009 and ended in December 2013. The goal was to eliminate tsetse flies from 40,000 km2 of area, through an integrated control campaign including insecticide targets, traps and cattle, sequential aerial treatment (SAT) and the mass treatment of livestock using trypanocides. The campaign involved assistance of the beneficiary communities at all the steps of the control strategy with insecticide impregnated targets. METHODS: This study was carried out to assess the impact of the control project on tsetse apparent density per trap per day (ADT). To evaluate the effectiveness of tsetse control, 201 sites were selected based on the baseline survey results carried out from December 2007 to November 2008. These sites were monitored bi-monthly from January 2010 to November 2012. At the end-of-study in 2013 a generalized entomological survey was carried out in 401 infested sites found during the longitudinal survey done before the control. Barrier and tsetse persistence areas were treated by ground spraying and evaluated. Controls were also done before and after aerial spraying. RESULTS: In the insecticide-impregnated target area, the control showed that ADT of tsetse flies declined from 10.73 (SD 13.27) to 0.43 (SD 2.51) fly/trap/day from the third month of campaign onwards (P < 0.0001) and remained low thereafter. At the end of the campaign in 2013, an 83% reduction of ADT was observed for Glossina palpalis gambiensis and a 92% reduction for G. tachinoides. Tsetse flies were captured only in 29% of the sites found infested in 2008. CONCLUSIONS: Tsetse flies could be suppressed efficiently but their elimination from the targeted area may require the use integrated methods including the Sterile Insect Technique, which is programmed through the development of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC Burkina) insectarium. The challenge will remain the sustainability of the achievement.


Subject(s)
Insect Control/methods , Trypanosomiasis/veterinary , Tsetse Flies/physiology , Animal Distribution , Animals , Burkina Faso , Female , Insect Vectors/drug effects , Insect Vectors/parasitology , Insect Vectors/physiology , Insecticides/pharmacology , Livestock/parasitology , Male , Trypanocidal Agents/administration & dosage , Trypanosoma/drug effects , Trypanosoma/physiology , Trypanosomiasis/parasitology , Trypanosomiasis/prevention & control , Trypanosomiasis/transmission , Tsetse Flies/drug effects , Tsetse Flies/parasitology
6.
PLoS Negl Trop Dis ; 11(5): e0005566, 2017 May.
Article in English | MEDLINE | ID: mdl-28467409

ABSTRACT

BACKGROUND: Tsetse (Glossina sensu stricto) are cyclical vectors of human and animal trypanosomoses, that are presently targeted by the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) coordinated by the African Union. In order to achieve effective control of tsetse, there is need to produce elaborate plans to guide intervention programmes. A model intended to aid in the planning of intervention programmes and assist a fuller understanding of tsetse distribution was applied, in a pilot study in the Masoka area, Mid-Zambezi valley in Zimbabwe, and targeting two savannah species, Glossina morsitans morsitans and Glossina pallidipes. METHODOLOGY/PRINCIPAL FINDINGS: The field study was conducted between March and December 2015 in 105 sites following a standardized grid sampling frame. Presence data were used to study habitat suitability of both species based on climatic and environmental data derived from MODIS and SPOT 5 satellite images. Factors influencing distribution were studied using an Ecological Niche Factor Analysis (ENFA) whilst habitat suitability was predicted using a Maximum Entropy (MaxEnt) model at a spatial resolution of 250 m. Area Under the Curve (AUC), an indicator of model performance, was 0.89 for G. m. morsitans and 0.96 for G. pallidipes. We then used the predicted suitable areas to calculate the probability that flies were really absent from the grid cells where they were not captured during the study based on a probability model using a risk threshold of 0.05. Apart from grid cells where G. m. morsitans and G. pallidipes were captured, there was a high probability of presence in an additional 128 km2 and 144 km2 respectively. CONCLUSIONS/SIGNIFICANCE: The modelling process promised to be useful in optimizing the outputs of presence/absence surveys, allowing the definition of tsetse infested areas with improved accuracy. The methodology proposed here can be extended to all the tsetse infested parts of Zimbabwe and may also be useful for other PATTEC national initiatives in other African countries.


Subject(s)
Ecosystem , Insect Control/economics , Tsetse Flies , Animals , Entomology , Humans , Insect Vectors/parasitology , Pilot Projects , Probability , Trypanosomiasis, African/prevention & control , Tsetse Flies/classification , Zimbabwe
7.
Parasit Vectors ; 9(1): 520, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27682638

ABSTRACT

BACKGROUND: Tsetse flies occur in much of sub-Saharan Africa where they are vectors of trypanosomes that cause human and animal African trypanosomosis. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal and Ethiopia. Three Glossina palpalis gambiensis strains [originating from Burkina Faso (BKF), Senegal (SEN) and an introgressed strain (SENbkf)] were established and are now available for use in future AW-IPM programmes against trypanosomes in West Africa. For each strain, knowledge of the environmental survival thresholds is essential to determine which of these strains is best suited to a particular environment or ecosystem, and can therefore be used effectively in SIT programmes. METHODS: In this paper, we investigated the survival and fecundity of three G. p. gambiensis strains maintained under various conditions: 25 °C and 40, 50, 60, and 75 % relative humidity (rH), 30 °C and 60 % rH and 35 °C and 60 % rH. RESULTS: The survival of the three strains was dependent on temperature only, and it was unaffected by changing humidity within the tested range. The BKF strain survived temperatures above its optimum better than the SEN strain. The SENbkf showed intermediate resistance to high temperatures. A temperature of about 32 °C was the limit for survival for all strains. A rH ranging from 40 to 76 % had no effect on fecundity at 25-26 °C. CONCLUSIONS: We discuss the implications of these results on tsetse SIT-based control programmes.

8.
Sci Rep ; 6: 27247, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27263862

ABSTRACT

The role of the northward expansion of Culicoides imicola Kieffer in recent and unprecedented outbreaks of Culicoides-borne arboviruses in southern Europe has been a significant point of contention. We combined entomological surveys, movement simulations of air-borne particles, and population genetics to reconstruct the chain of events that led to a newly colonized French area nestled at the northern foot of the Pyrenees. Simulating the movement of air-borne particles evidenced frequent wind-transport events allowing, within at most 36 hours, the immigration of midges from north-eastern Spain and Balearic Islands, and, as rare events, their immigration from Corsica. Completing the puzzle, population genetic analyses discriminated Corsica as the origin of the new population and identified two successive colonization events within west-Mediterranean basin. Our findings are of considerable importance when trying to understand the invasion of new territories by expanding species.


Subject(s)
Bluetongue/transmission , Ceratopogonidae/classification , Ceratopogonidae/physiology , Insect Vectors/classification , Insect Vectors/physiology , Animals , Bluetongue/epidemiology , Ceratopogonidae/genetics , Ceratopogonidae/virology , DNA/genetics , Disease Outbreaks , Entomology , Europe , France , Genetic Variation , Genetics, Population , Insect Vectors/genetics , Insect Vectors/virology , Linkage Disequilibrium , Phylogeography , Sequence Analysis, DNA , Sheep , Spain , Wind
9.
Proc Natl Acad Sci U S A ; 112(47): 14575-80, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26553973

ABSTRACT

Tsetse flies are the cyclical vectors of deadly human and animal trypanosomes in sub-Saharan Africa. Tsetse control is a key component for the integrated management of both plagues, but local eradication successes have been limited to less than 2% of the infested area. This is attributed to either resurgence of residual populations that were omitted from the eradication campaign or reinvasion from neighboring infested areas. Here we focused on Glossina palpalis gambiensis, a riverine tsetse species representing the main vector of trypanosomoses in West Africa. We mapped landscape resistance to tsetse genetic flow, hereafter referred to as friction, to identify natural barriers that isolate tsetse populations. For this purpose, we fitted a statistical model of the genetic distance between 37 tsetse populations sampled in the region, using a set of remotely sensed environmental data as predictors. The least-cost path between these populations was then estimated using the predicted friction map. The method enabled us to avoid the subjectivity inherent in the expert-based weighting of environmental parameters. Finally, we identified potentially isolated clusters of G. p. gambiensis habitat based on a species distribution model and ranked them according to their predicted genetic distance to the main tsetse population. The methodology presented here will inform the choice on the most appropriate intervention strategies to be implemented against tsetse flies in different parts of Africa. It can also be used to control other pests and to support conservation of endangered species.


Subject(s)
Insect Control , Trypanosomiasis/prevention & control , Tsetse Flies , Animals , Cattle , Demography , Female , Genotype , Humans , Insect Vectors , Linear Models , Linkage Disequilibrium , Male , Trypanosomiasis/transmission , Tsetse Flies/genetics
10.
Parasit Vectors ; 8: 406, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26238201

ABSTRACT

BACKGROUND: Fragmentation of tsetse habitat in eastern Zambia is largely due to encroachments by subsistence farmers into new areas in search of new agricultural land. The impact of habitat fragmentation on tsetse populations is not clearly understood. This study was aimed at establishing the impact of habitat fragmentation on physiological and demographic parameters of tsetse flies in order to enhance the understanding of the relationship between fragmentation and African animal trypanosomosis (AAT) risk. METHODS: A longitudinal study was conducted to establish the age structure, abundance, proportion of females and trypanosome infection rate of Glossina morsitans morsitans Westwood (Diptera: Glossinidae) in areas of varying degrees of habitat fragmentation in Eastern Zambia. Black screen fly rounds were used to sample tsetse populations monthly for 1 year. Logistic regression was used to analyse age, proportion of females and infection rate data. RESULTS: Flies got significantly older as fragmentation increased (p < 0.004). The proportion of old flies, i.e. above ovarian category four, increased significantly (P < 0.001) from 25.9% (CI 21.4-31.1) at the least fragmented site (Lusandwa) to 74.2% (CI 56.8-86.3) at the highly fragmented site (Chisulo). In the most fragmented area (Kasamanda), tsetse flies had almost disappeared. In the highly fragmented area a significantly higher trypanosome infection rate in tsetse (P < 0.001) than in areas with lower fragmentation was observed. Consequently a comparatively high trypanosomosis incidence rate in livestock was observed there despite lower tsetse density (p < 0.001). The overall proportion of captured female flies increased significantly (P < 0.005) as fragmentation reduced. The proportion increased from 0.135 (CI 0.10-0.18) to 0.285 (CI 0.26-0.31) at the highly and least fragmented sites, respectively. CONCLUSIONS: Habitat fragmentation creates conditions to which tsetse populations respond physiologically and demographically thereby affecting tsetse-trypanosome interactions and hence influencing trypanosomosis risk. Temperature rise due to fragmentation coupled with dominance of old flies in populations increases infection rate in tsetse and hence creates high risk of trypanosomosis in fragmented areas. Possibilities of how correlations between biological characteristics of populations and the degree of fragmentation can be used to structure populations based on their well-being, using integrated GIS and remote sensing techniques are discussed.


Subject(s)
Ecosystem , Trypanosoma/isolation & purification , Trypanosomiasis, Bovine/transmission , Tsetse Flies/physiology , Aging , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Female , Insect Vectors/physiology , Risk Factors , Sentinel Surveillance , Sex Ratio , Trypanosoma/classification , Trypanosomiasis, Bovine/epidemiology , Zambia/epidemiology
11.
PLoS Negl Trop Dis ; 9(7): e0003921, 2015.
Article in English | MEDLINE | ID: mdl-26154506

ABSTRACT

BACKGROUND: African animal trypanosomosis (AAT) is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking. METHODOLOGY/PRINCIPAL FINDINGS: We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) national initiatives. We computed the entomological inoculation rate (EIR) or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a "one layer-one model" approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r2 = 67%), showed a positive correlation but less predictive power with serological status (r2 = 22%) aggregated at the village level but was not related to the illness status (r2 = 2%). CONCLUSIONS/SIGNIFICANCE: The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate-sensitive vector-borne diseases.


Subject(s)
Insect Vectors/parasitology , Trypanosomiasis, Bovine/epidemiology , Tsetse Flies/parasitology , Africa/epidemiology , Animals , Cattle , Ecosystem , Insect Vectors/physiology , Models, Theoretical , Risk Factors , Seasons , Trypanosomiasis, Bovine/parasitology , Trypanosomiasis, Bovine/transmission , Tsetse Flies/physiology
12.
PLoS One ; 10(6): e0131021, 2015.
Article in English | MEDLINE | ID: mdl-26121048

ABSTRACT

In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work should also assess whether other trapping methods such as host-baited traps help reduce overdispersion.


Subject(s)
Ceratopogonidae/physiology , Models, Biological , Animals , Female , Multivariate Analysis , Reproducibility of Results , Senegal , Species Specificity
13.
PLoS Negl Trop Dis ; 8(8): e3112, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25144776

ABSTRACT

BACKGROUND: In 2005, the Government of Senegal embarked on a campaign to eliminate a Glossina palpalis gambiensis population from the Niayes area (∼ 1000 km(2)) under the umbrella of the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). The project was considered an ecologically sound approach to intensify cattle production. The elimination strategy includes a suppression phase using insecticide impregnated targets and cattle, and an elimination phase using the sterile insect technique, necessary to eliminate tsetse in this area. METHODOLOGY/PRINCIPAL FINDINGS: Three main cattle farming systems were identified: a traditional system using trypanotolerant cattle and two "improved" systems using more productive cattle breeds focusing on milk and meat production. In improved farming systems herd size was 45% lower and annual cattle sales were €250 (s.d. 513) per head as compared to €74 (s.d. 38) per head in traditional farming systems (p<10-3). Tsetse distribution significantly impacted the occurrence of these farming systems (p = 0.001), with 34% (s.d. 4%) and 6% (s.d. 4%) of improved systems in the tsetse-free and tsetse-infested areas, respectively. We calculated the potential increases of cattle sales as a result of tsetse elimination considering two scenarios, i.e. a conservative scenario with a 2% annual replacement rate from traditional to improved systems after elimination, and a more realistic scenario with an increased replacement rate of 10% five years after elimination. The final annual increase of cattle sales was estimated at ∼ €2800/km(2) for a total cost of the elimination campaign reaching ∼ €6400/km(2). CONCLUSION/SIGNIFICANCE: Despite its high cost, the benefit-cost analysis indicated that the project was highly cost-effective, with Internal Rates of Return (IRR) of 9.8% and 19.1% and payback periods of 18 and 13 years for the two scenarios, respectively. In addition to an increase in farmers' income, the benefits of tsetse elimination include a reduction of grazing pressure on the ecosystems.


Subject(s)
Cost-Benefit Analysis , Insect Control , Trypanosomiasis, African , Tsetse Flies , Animals , Cattle , Insect Control/economics , Insect Control/methods , Insect Control/statistics & numerical data , Senegal/epidemiology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/transmission
14.
Proc Natl Acad Sci U S A ; 111(28): 10149-54, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24982143

ABSTRACT

Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models' results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs.


Subject(s)
Communicable Disease Control , Insect Control , Insect Vectors , Models, Biological , Trypanosomiasis, African/prevention & control , Tsetse Flies , Animals , Cattle , Female , Humans , Infertility, Male , Male , Senegal
SELECTION OF CITATIONS
SEARCH DETAIL
...