Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780655

ABSTRACT

A workflow has been evaluated that utilizes a single tissue section to obtain spatially co-registered, molecular, and phenotypical information suitable for AI-enabled image analysis. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used to obtain molecular information followed by conventional histological staining and immunolabelling. The impact of varying DESI-MSI conditions (e.g., heated transfer line (HTL) temperature, scan rate, acquisition time) on the detection of small molecules and lipids as well as on tissue integrity crucial for integration into typical clinical pathology workflows was assessed in human kidney. Increasing the heated transfer line temperature from 150 to 450 °C resulted in a 1.8-fold enhancement in lipid signal at a scan rate of 10 scans/s, while preserving histological features. Moreover, increasing the acquisition speed to 30 scans/s yielded superior lipid signal when compared to 10 scans/s at 150 °C. Tissue morphology and protein epitopes remained intact allowing full histological assessment and further multiplex phenotyping by immunofluorescence (mIF) and immunohistochemistry (mIHC) of the same section. The successful integration of the workflow incorporating DESI-MSI, H&E, and immunolabelling on a single tissue section revealed an accumulation of ascorbic acid in regions of focal chronic inflammatory cell infiltrate within non-cancerous kidney tissue. Additionally, a strong positive correlation between PI 38:3 and proliferating cells was observed in clear cell renal cell carcinoma (ccRCC) showing the utility of this approach in uncovering molecular associations in disease pathology.

2.
ACS Catal ; 14(5): 3090-3102, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38449528

ABSTRACT

Nucleosides are ubiquitous to life and are required for the synthesis of DNA, RNA, and other molecules crucial for cell survival. Despite the notoriously difficult organic synthesis of nucleosides, 2'-deoxynucleoside analogues can interfere with natural DNA replication and repair and are successfully employed as anticancer, antiviral, and antimicrobial compounds. Nucleoside 2'-deoxyribosyltransferase (dNDT) enzymes catalyze transglycosylation via a covalent 2'-deoxyribosylated enzyme intermediate with retention of configuration, having applications in the biocatalytic synthesis of 2'-deoxynucleoside analogues in a single step. Here, we characterize the structure and function of a thermophilic dNDT, the protein from Chroococcidiopsis thermalis (CtNDT). We combined enzyme kinetics with structural and biophysical studies to dissect mechanistic features in the reaction coordinate, leading to product formation. Bell-shaped pH-rate profiles demonstrate activity in a broad pH range of 5.5-9.5, with two very distinct pKa values. A pronounced viscosity effect on the turnover rate indicates a diffusional step, likely product (nucleobase1) release, to be rate-limiting. Temperature studies revealed an extremely curved profile, suggesting a large negative activation heat capacity. We trapped a 2'-fluoro-2'-deoxyarabinosyl-enzyme intermediate by mass spectrometry and determined high-resolution structures of the protein in its unliganded, substrate-bound, ribosylated, 2'-difluoro-2'-deoxyribosylated, and in complex with probable transition-state analogues. We reveal key features underlying (2'-deoxy)ribonucleoside selection, as CtNDT can also use ribonucleosides as substrates, albeit with a lower efficiency. Ribonucleosides are the building blocks of RNA and other key intracellular metabolites participating in energy and metabolism, expanding the scope of use of CtNDT in biocatalysis.

3.
Biochemistry ; 62(17): 2658-2668, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37582341

ABSTRACT

The enzyme 2'-deoxynucleoside 5'-phosphate N-hydrolase 1 (DNPH1) catalyzes the N-ribosidic bond cleavage of 5-hydroxymethyl-2'-deoxyuridine 5'-monophosphate to generate 2-deoxyribose 5-phosphate and 5-hydroxymethyluracil. DNPH1 accepts other 2'-deoxynucleoside 5'-monophosphates as slow-reacting substrates. DNPH1 inhibition is a promising strategy to overcome resistance to and potentiate anticancer poly(ADP-ribose) polymerase inhibitors. We solved the crystal structure of unliganded human DNPH1 and took advantage of the slow reactivity of 2'-deoxyuridine 5'-monophosphate (dUMP) as a substrate to obtain a crystal structure of the DNPH1:dUMP Michaelis complex. In both structures, the carboxylate group of the catalytic Glu residue, proposed to act as a nucleophile in covalent catalysis, forms an apparent low-barrier hydrogen bond with the hydroxyl group of a conserved Tyr residue. The crystal structures are supported by functional data, with liquid chromatography-mass spectrometry analysis showing that DNPH1 incubation with dUMP leads to slow yet complete hydrolysis of the substrate. A direct UV-vis absorbance-based assay allowed characterization of DNPH1 kinetics at low dUMP concentrations. A bell-shaped pH-rate profile indicated that acid-base catalysis is operational and that for maximum kcat/KM, two groups with an average pKa of 6.4 must be deprotonated, while two groups with an average pKa of 8.2 must be protonated. A modestly inverse solvent viscosity effect rules out diffusional processes involved in dUMP binding to and possibly uracil release from the enzyme as rate limiting to kcat/KM. Solvent deuterium isotope effects on kcat/KM and kcat were inverse and unity, respectively. A reaction mechanism for dUMP hydrolysis is proposed.


Subject(s)
Deoxyuridine , Hydrolases , Humans , Hydrolysis , Catalysis , Solvents , Phosphates , Kinetics , Hydrogen-Ion Concentration
4.
ACS Catal ; 13(11): 7669-7679, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37288093

ABSTRACT

The bifunctional enzyme phosphoribosyl-ATP pyrophosphohydrolase/phosphoribosyl-AMP cyclohydrolase (HisIE) catalyzes the second and third steps of histidine biosynthesis: pyrophosphohydrolysis of N1-(5-phospho-ß-D-ribosyl)-ATP (PRATP) to N1-(5-phospho-ß-D-ribosyl)-AMP (PRAMP) and pyrophosphate in the C-terminal HisE-like domain, and cyclohydrolysis of PRAMP to N-(5'-phospho-D-ribosylformimino)-5-amino-1-(5″-phospho-D-ribosyl)-4-imidazolecarboxamide (ProFAR) in the N-terminal HisI-like domain. Here we use UV-VIS spectroscopy and LC-MS to show Acinetobacter baumannii putative HisIE produces ProFAR from PRATP. Employing an assay to detect pyrophosphate and another to detect ProFAR, we established the pyrophosphohydrolase reaction rate is higher than the overall reaction rate. We produced a truncated version of the enzyme-containing only the C-terminal (HisE) domain. This truncated HisIE was catalytically active, which allowed the synthesis of PRAMP, the substrate for the cyclohydrolysis reaction. PRAMP was kinetically competent for HisIE-catalyzed ProFAR production, demonstrating PRAMP can bind the HisI-like domain from bulk water, and suggesting that the cyclohydrolase reaction is rate-limiting for the overall bifunctional enzyme. The overall kcat increased with increasing pH, while the solvent deuterium kinetic isotope effect decreased at more basic pH but was still large at pH 7.5. The lack of solvent viscosity effects on kcat and kcat/KM ruled out diffusional steps limiting the rates of substrate binding and product release. Rapid kinetics with excess PRATP demonstrated a lag time followed by a burst in ProFAR formation. These observations are consistent with a rate-limiting unimolecular step involving a proton transfer following adenine ring opening. We synthesized N1-(5-phospho-ß-D-ribosyl)-ADP (PRADP), which could not be processed by HisIE. PRADP inhibited HisIE-catalyzed ProFAR formation from PRATP but not from PRAMP, suggesting that it binds to the phosphohydrolase active site while still permitting unobstructed access of PRAMP to the cyclohydrolase active site. The kinetics data are incompatible with a build-up of PRAMP in bulk solvent, indicating HisIE catalysis involves preferential channeling of PRAMP, albeit not via a protein tunnel.

5.
Open Biol ; 13(5): 220313, 2023 05.
Article in English | MEDLINE | ID: mdl-37132223

ABSTRACT

Most biologically active oxysterols have a 3ß-hydroxy-5-ene function in the ring system with an additional site of oxidation at C-7 or on the side-chain. In blood plasma oxysterols with a 7α-hydroxy group are also observed with the alternative 3-oxo-4-ene function in the ring system formed by ubiquitously expressed 3ß-hydroxy-Δ5-C27-steroid oxidoreductase Δ5-isomerase, HSD3B7. However, oxysterols without a 7α-hydroxy group are not substrates for HSD3B7 and are not usually observed with the 3-oxo-4-ene function. Here we report the unexpected identification of oxysterols in plasma derived from umbilical cord blood and blood from pregnant women taken before delivery at 37+ weeks of gestation, of side-chain oxysterols with a 3-oxo-4-ene function but no 7α-hydroxy group. These 3-oxo-4-ene oxysterols were also identified in placenta, leading to the hypothesis that they may be formed by a previously unrecognized 3ß-hydroxy-Δ5-C27-steroid oxidoreductase Δ5-isomerase activity of HSD3B1, an enzyme which is highly expressed in placenta. Proof-of-principle experiments confirmed that HSD3B1 has this activity. We speculate that HSD3B1 in placenta is the source of the unexpected 3-oxo-4-ene oxysterols in cord and pregnant women's plasma and may have a role in controlling the abundance of biologically active oxysterols delivered to the fetus.


Subject(s)
Oxysterols , Female , Humans , Pregnancy , Isomerases , Multienzyme Complexes , Placenta , Steroids
6.
Cancer Chemother Pharmacol ; 91(5): 401-412, 2023 05.
Article in English | MEDLINE | ID: mdl-37000221

ABSTRACT

INTRODUCTION: Fluoropyrimidines, principally 5-fluorouracil (5-FU), remain a key component of chemotherapy regimens for multiple cancer types, in particular colorectal and other gastrointestinal malignancies. To overcome key limitations and pharmacologic challenges that hinder the clinical utility of 5-FU, NUC-3373, a phosphoramidate transformation of 5-fluorodeoxyuridine, was designed to improve the efficacy and safety profile as well as the administration challenges associated with 5-FU. METHODS: Human colorectal cancer cell lines HCT116 and SW480 were treated with sub-IC50 doses of NUC-3373 or 5-FU. Intracellular activation was measured by LC-MS. Western blot was performed to determine binding of the active anti-cancer metabolite FdUMP to thymidylate synthase (TS) and DNA damage. RESULTS: We demonstrated that NUC-3373 generates more FdUMP than 5-FU, resulting in a more potent inhibition of TS, DNA misincorporation and subsequent cell cycle arrest and DNA damage in vitro. Unlike 5-FU, the thymineless death induced by NUC-3373 was rescued by the concurrent addition of exogenous thymidine. 5-FU cytotoxicity, however, was only reversed by supplementation with uridine, a treatment used to reduce 5-FU-induced toxicities in the clinic. This is in line with our findings that 5-FU generates FUTP which is incorporated into RNA, a mechanism known to underlie the myelosuppression and gastrointestinal inflammation associated with 5-FU. CONCLUSION: Taken together, these results highlight key differences between NUC-3373 and 5-FU that are driven by the anti-cancer metabolites generated. NUC-3373 is a potent inhibitor of TS that also causes DNA-directed damage. These data support the preliminary clinical evidence that suggest NUC-3373 has a favorable safety profile in patients.


Subject(s)
Colorectal Neoplasms , Thymidylate Synthase , Humans , Thymidylate Synthase/genetics , Fluorodeoxyuridylate/pharmacology , Fluorodeoxyuridylate/therapeutic use , Fluorouracil/therapeutic use , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Antimetabolites , Colorectal Neoplasms/genetics , DNA
7.
Front Endocrinol (Lausanne) ; 13: 1031013, 2022.
Article in English | MEDLINE | ID: mdl-36440193

ABSTRACT

The aim of this study was to identify oxysterols and any down-stream metabolites in placenta, umbilical cord blood plasma, maternal plasma and amniotic fluid to enhance our knowledge of the involvement of these molecules in pregnancy. We confirm the identification of 20S-hydroxycholesterol in human placenta, previously reported in a single publication, and propose a pathway from 22R-hydroxycholesterol to a C27 bile acid of probable structure 3ß,20R,22R-trihydroxycholest-5-en-(25R)26-oic acid. The pathway is evident not only in placenta, but pathway intermediates are also found in umbilical cord plasma, maternal plasma and amniotic fluid but not non-pregnant women.


Subject(s)
Oxysterols , Female , Humans , Pregnancy , Chromatography, Liquid , Mass Spectrometry , Amniotic Fluid/metabolism , Fetal Blood/metabolism
8.
Article in English | MEDLINE | ID: mdl-34639322

ABSTRACT

BACKGROUND: Unemployment, underemployment, and the quality of work are national occupational health risk factors that drive critical national problems; however, to date, there have been no systematic efforts to document the public health impact of this situation. METHODS: An environmental scan was conducted to explore the root causes and health impacts of underemployment and unemployment and highlight multilevel perspectives and factors in the landscape of underemployment and unemployment. METHODS: included a review of gray literature and research literature, followed by key informant interviews with nine organizational representatives in employment research and policy, workforce development, and industry to assess perceived needs and gaps in practice. RESULTS: Evidence highlights the complex nature of underemployment and unemployment, with multiple macro-level underlying drivers, including the changing nature of work, a dynamic labor market, inadequate enforcement of labor protection standards, declining unions, wage depression, and weak political will interacting with multiple social determinants of health. Empirical literature on unemployment and physical, mental, and psychological well-being, substance abuse, depression in young adults, and suicides is quite extensive; however, there are limited data on the impacts of underemployment on worker health and well-being. Additionally, organizations do not routinely consider health outcomes as they relate to their work in workforce or policy development. DISCUSSION AND CONCLUSIONS: Several gaps in data and research will need to be addressed in order to assess the full magnitude of the public health burden of underemployment and unemployment. Public health needs to champion a research and practice agenda in partnership with multisector stakeholders to illuminate the role of employment quality and status in closing the gap on health inequities, and to integrate workforce health and well-being into labor and economic development agendas across government agencies and industry.


Subject(s)
Suicide , Unemployment , Employment , Humans , Perception , Public Health , Socioeconomic Factors , United States , Young Adult
9.
Anal Chim Acta ; 1154: 338259, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33736801

ABSTRACT

Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography - tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient.


Subject(s)
Oxysterols , Cholesterol , Chromatography, Liquid , Humans , Mass Spectrometry , Sterols
10.
J Steroid Biochem Mol Biol ; 206: 105794, 2021 02.
Article in English | MEDLINE | ID: mdl-33246156

ABSTRACT

Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7ß-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3ß-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7ß-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7ß-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.


Subject(s)
Bile Acids and Salts/biosynthesis , Cholesterol/biosynthesis , Dehydrocholesterols/metabolism , Smith-Lemli-Opitz Syndrome/metabolism , Bile Acids and Salts/genetics , Bile Acids and Salts/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Chromatography, Liquid , Dehydrocholesterols/chemistry , Humans , Lipogenesis/genetics , Mass Spectrometry , Molecular Docking Simulation , Smith-Lemli-Opitz Syndrome/genetics , Smith-Lemli-Opitz Syndrome/pathology
11.
Free Radic Biol Med ; 144: 124-133, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31009661

ABSTRACT

Cholestane-3ß,5α,6ß-triol (3ß,5α,6ß-triol) is formed from cholestan-5,6-epoxide (5,6-EC) in a reaction catalysed by cholesterol epoxide hydrolase, following formation of 5,6-EC through free radical oxidation of cholesterol. 7-Oxocholesterol (7-OC) and 7ß-hydroxycholesterol (7ß-HC) can also be formed by free radical oxidation of cholesterol. Here we investigate how 3ß,5α,6ß-triol, 7-OC and 7ß-HC are metabolised to bile acids. We show, by monitoring oxysterol metabolites in plasma samples rich in 3ß,5α,6ß-triol, 7-OC and 7ß-HC, that these three oxysterols fall into novel branches of the acidic pathway of bile acid biosynthesis becoming (25R)26-hydroxylated then carboxylated, 24-hydroxylated and side-chain shortened to give the final products 3ß,5α,6ß-trihydroxycholanoic, 3ß-hydroxy-7-oxochol-5-enoic and 3ß,7ß-dihydroxychol-5-enoic acids, respectively. The intermediates in these pathways may be causative of some phenotypical features of, and/or have diagnostic value for, the lysosomal storage diseases, Niemann Pick types C and B and lysosomal acid lipase deficiency. Free radical derived oxysterols are metabolised in human to unusual bile acids via novel branches of the acidic pathway, intermediates in these pathways are observed in plasma.


Subject(s)
Cholestanols/blood , Cholic Acids/blood , Hydroxycholesterols/blood , Ketocholesterols/blood , Lysosomal Storage Diseases/blood , Niemann-Pick Diseases/blood , Wolman Disease/blood , Biotransformation , Cholesterol/blood , Cholic Acids/biosynthesis , Chromatography, Liquid , Epoxide Hydrolases/blood , Free Radicals/blood , Humans , Hydroxylation , Lysosomal Storage Diseases/physiopathology , Mass Spectrometry , Niemann-Pick Diseases/physiopathology , Oxidation-Reduction , Wolman Disease/physiopathology , Wolman Disease
12.
J Lipid Res ; 59(6): 1058-1070, 2018 06.
Article in English | MEDLINE | ID: mdl-29626102

ABSTRACT

7-Oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC), and its hydrolysis product cholestane-3ß,5α,6ß-triol (3ß,5α,6ß-triol) are normally minor oxysterols in human samples; however, in disease, their levels may be greatly elevated. This is the case in plasma from patients suffering from some lysosomal storage disorders, e.g., Niemann-Pick disease type C, or the inborn errors of sterol metabolism, e.g., Smith-Lemli-Opitz syndrome and cerebrotendinous xanthomatosis. A complication in the analysis of 7-OC and 5,6-EC is that they can also be formed ex vivo from cholesterol during sample handling in air, causing confusion with molecules formed in vivo. When formed endogenously, 7-OC, 5,6-EC, and 3ß,5α,6ß-triol can be converted to bile acids. Here, we describe methodology based on chemical derivatization and LC/MS with multistage fragmentation (MSn) to identify the necessary intermediates in the conversion of 7-OC to 3ß-hydroxy-7-oxochol-5-enoic acid and 5,6-EC and 3ß,5α,6ß-triol to 3ß,5α,6ß-trihydroxycholanoic acid. Identification of intermediate metabolites is facilitated by their unusual MSn fragmentation patterns. Semiquantitative measurements are possible, but absolute values await the synthesis of isotope-labeled standards.


Subject(s)
Bile Acids and Salts/blood , Bile Acids and Salts/chemistry , Blood Chemical Analysis/methods , Mass Spectrometry/methods , Oxysterols/blood , Oxysterols/chemistry , Humans
13.
Chem Phys Lipids ; 207(Pt B): 69-80, 2017 10.
Article in English | MEDLINE | ID: mdl-28411018

ABSTRACT

The introduction of a hydroxy group to the cholesterol skeleton introduces not only the possibility for positional isomers but also diastereoisomers, where two or more isomers have different configurations at one or more of the stereocentres but are not mirror images. The differentiation of diastereoisomers is important as differing isomers can have differing biochemical properties and are formed via different biochemical pathways. Separation of diasterioisomers is not always easy by chromatographic methods Here we demonstrate, by application of charge-tagging and derivatisation with the Girard P reagent, the separation and detection of biologically relevant diastereoisomers using liquid chromatography - mass spectrometry with multistage fragmentation.


Subject(s)
Oxysterols/analysis , Oxysterols/chemistry , Cholestenes/analysis , Cholestenes/chemistry , Cholic Acids/analysis , Cholic Acids/chemistry , Chromatography, Liquid , Humans , Mass Spectrometry , Molecular Conformation , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Stereoisomerism
14.
Pain Res Manag ; 13(1): 51-7, 2008.
Article in English | MEDLINE | ID: mdl-18301816

ABSTRACT

BACKGROUND: Acute pain is a common experience for hospitalized children. Despite mounting research on treatments for acute procedure-related pain, it remains inadequately treated. OBJECTIVE: To critically appraise all systematic reviews on the effectiveness of acute procedure-related pain management in hospitalized children. METHODS: Published systematic reviews and meta-analyses on pharmacological and nonpharmacological management of acute procedure-related pain in hospitalized children aged one to 18 years were evaluated. Electronic searches were conducted in the Cochrane Database of Systematic Reviews, Medline, EMBASE, the Cumulative Index to Nursing and Allied Health Literature and PsycINFO. Two reviewers independently selected articles for review and assessed their quality using a validated seven-point quality assessment measure. Any disagreements were resolved by a third reviewer. RESULTS: Of 1469 published articles on interventions for acute pain in hospitalized children, eight systematic reviews met the inclusion criteria and were included in the analysis. However, only five of these reviews were of high quality. Critical appraisal of pharmacological pain interventions indicated that amethocaine was superior to EMLA (AstraZeneca Canada Inc) for reducing needle pain. Distraction and hypnosis were nonpharmacological interventions effective for management of acute procedure-related pain in hospitalized children. CONCLUSIONS: There is growing evidence of rigorous evaluations of both pharmacological and nonpharmacological strategies for acute procedure-related pain in children; however, the evidence underlying some commonly used strategies is limited. The present review will enable the creation of a future research plan to facilitate clinical decision making and to develop clinical policy for managing acute procedure-related pain in children.


Subject(s)
Child, Hospitalized/statistics & numerical data , Diagnostic Tests, Routine/adverse effects , Pain/epidemiology , Pain/etiology , Pain/prevention & control , Systematic Reviews as Topic , Child , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...