Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 9(48): 6333-43, 2007 Dec 28.
Article in English | MEDLINE | ID: mdl-18060163

ABSTRACT

W/C emulsions were stabilized using hydrophobic silica particles adsorbed at the interface, resulting in average droplet diameters as low as 7.5 microm. A porous cross-linked shell was formed about a hydrophilic (colloidal and fumed) silica core with a trifunctional silylating agent, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethyoxysilane, to render the particles CO(2)-philic. The stability of emulsions comprising equal weights of CO(2) and water was assessed with visual observations of settling fronts and the degree of emulsion coalescence, and the average drop size was measured by optical microscopy. The effect of CO(2) density on both emulsion stability and droplet size was determined quantitatively. The major destabilizing mechanism of the emulsions was settling, whereas Ostwald ripening and coalescence were not visible at any density, even over 7 days. Flocculation of the settling droplets did not occur, although gelation of the emulsions through particle interactions resulted after longer periods of time. CO(2)-philic particles offer a new route to highly stable W/C emulsions, with particle energies of attachment on the order of 10(6)kT, even at CO(2) densities as low as 0.78 g ml(-1). At these low densities, surfactants rarely stabilize emulsions as the result of poor surfactant tail solvation.


Subject(s)
Carbon Dioxide/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Emulsions , Hydrophobic and Hydrophilic Interactions , Microscopy/methods , Optics and Photonics , Particle Size , Surface Properties
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 1): 031608, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16605538

ABSTRACT

Porous polyethylene oxide-b-polyfluorooctylmethacrylate (PEO-b-PFOMA) diblock copolymer films were drop cast onto substrates from Freon (1,1,2-trichlorotrifluoroethane) in a humid atmosphere. The pores in the films exhibit long range hexagonal order in some cases, depending on the PFOMA-to-PEO molecular weight ratio. Films with the best ordered pores were formed with PFOMA-to-PEO ratios of 70 kDa:2 kDa. The pores in the polymer films derive from water droplets that condense as Freon evaporates. The polymer stabilizes the water droplets, or "breath figures," which act as an immiscible template that molds the porous film. Increased polymer hydrophobicity reduces the water wettability of the air/Freon interface, which in turn decreases water droplet nucleation, thus influencing the final pore size and spatial order in the polymer films. We describe how water droplet nucleation influences the final pore size and packing order in the polymer films.

3.
Langmuir ; 22(5): 2161-70, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16489803

ABSTRACT

A novel high-pressure apparatus and technique were developed to measure CO2/water/solid contact angles (theta) in situ for pressures up to 204 bar. For two glass substrates with different hydrophilicities, theta increased significantly with CO2 pressure. As the pressure was increased, an increase in the cohesive energy density of CO2 caused the substrate/CO2 and water/CO2 interfacial tensions (gamma) to decrease, whereas the water/substrate gamma value increased. theta for the more hydrophobic substrate was predicted accurately from the experimental water/CO2 gamma value and an interfacial model that included only long-range forces. However, for the more hydrophilic substrate, short-range specific interactions due to capping of the silanol groups by physisorbed CO2 resulted in an unusually large increase in the water/substrate gamma value, which led to a much larger increase in theta than predicted by the model. A novel type of theta hysteresis was discovered in which larger theta values were observed during depressurization than during pressurization, even down to ambient pressure. Effective receding angles were observed upon pressurization, and effective advancing angles were observed upon depressurization on the basis of movement of the three-phase contact line. The greater degree of hysteresis for the more hydrophilic silica can be attributed in part to the capping of silanol groups with CO2. The large effects of CO2 on the various interfacial energies play a key role in the enhanced ability of CO2, relative to many organic solvents, to dry silica surfaces as reported previously on the basis of FTIR spectroscopy (Tripp, C. P.; Combes, J. R. Langmuir 1998, 14, 7348-7352).

4.
J Colloid Interface Sci ; 298(1): 406-18, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16376919

ABSTRACT

A nonionic-methylated branched hydrocarbon surfactant, octa(ethylene glycol) 2,6,8-trimethyl-4-nonyl ether (5b-C12E8) emulsifies up to 90% CO2 in water with polyhedral cells smaller than 10 microm, as characterized by optical microscopy. The stability of these concentrated CO2/water (C/W) emulsions increases with pressure and in some cases exceeds 24 h. An increase in pressure weakens the attractive van der Waals interactions between the CO2 cells across water and raises the disjoining pressure. It also enhances the solution of the surfactant tail and drives the surfactant from water towards the water-CO2 interface, as characterized by the change in emulsion phase behavior and the decrease in interfacial tension (gamma) to 2.1 mN/m. As the surfactant adsorption increases, the greater tendency for ion adsorption is likely to increase the electrostatic repulsion in the thin lamellae and raise the disjoining pressure. As pressure increases, the increase in disjoining pressure and decrease in the capillary pressure (due to the decrease in gamma) each favor greater stability of the lamellae against rupture. The electrical conductivity is predicted successfully as a function of Bruggeman's model for concentrated emulsions. Significant differences in the stability are observed for concentrated C/W emulsions at elevated pressure versus air/W or C/W foams at atmospheric pressure.

5.
Langmuir ; 21(13): 5914-23, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15952842

ABSTRACT

Over the past decade, steric stabilization has been achieved for a variety of inorganic and organic colloids in supercritical fluid carbon dioxide (scCO2). Herein we demonstrate that colloids may also be stabilized in CO2 by electrostatic forces, despite the ultralow dielectric constant of 1.5. Zeta potentials of micrometer-sized water droplets, measured in a microelectrophoresis cell, reached -70 mV corresponding to a few elementary charges per square micrometer of droplet surface. This degree of charge was sufficient to stabilize water/CO2 emulsions for an hour, even with water volume fractions of 5%. Hydrogen ions partition preferentially, relative to bicarbonate ions, from the emulsion droplets to the cores of surfactant micelles in the diffuse double layer surrounding the droplets. The micelles, formed with a low molecular weight branched hydrocarbon surfactant, prevent ion pairing of the hydrogen counterions to the negatively charged emulsion droplets. Dielectrophoresis of the water droplets at a frequency of 60 Hz leads to chains containing a dozen droplets with lengths of 50 mum. The ability to form electrostatically stabilized colloids in carbon dioxide is particularly useful in practical applications, because steric stabilization in CO2 is often limited by the poor solvation of the stabilizers.

6.
Langmuir ; 20(21): 9380-7, 2004 Oct 12.
Article in English | MEDLINE | ID: mdl-15461533

ABSTRACT

Nondilute nanoparticle dispersions were stabilized in liquid CO2 at 25 degrees C at pressures as low as the vapor pressure for greater than 30 min. By modifying hydrophilic silica with a trifunctional silylating agent, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxy silane, a cross-linked polymer shell was formed around the silica core. The presence of the shell led to weaker Hamaker interactions between approaching fluoro-silica composite particles and enabled dispersibility at weaker solvent conditions (low pressures) than for metals with larger Hamaker constants. Steric stabilization of the nanoparticles was provided by low-molecular-weight perfluorodecane side chains at the surface of the fluoro-silica composite shell. Compared to polymeric chains, the perfluorodecane side chains are more easily solvated and thus stabilize nanoparticle dispersions in CO2 at much lower pressures, even down to the vapor pressure.


Subject(s)
Carbon Dioxide/chemistry , Fluorocarbons/chemistry , Nanostructures/chemistry , Silanes/chemistry , Molecular Structure , Nanostructures/ultrastructure , Particle Size , Pressure , Silicon Dioxide/chemistry , Surface Properties , Time Factors , Volatilization
7.
Langmuir ; 20(19): 7976-83, 2004 Sep 14.
Article in English | MEDLINE | ID: mdl-15350061

ABSTRACT

Stable carbon dioxide-in-water emulsions were formed with silica nanoparticles adsorbed at the interface. The emulsion stability and droplet size were characterized with optical microscopy, turbidimetry, and measurements of creaming rates. The increase in the emulsion stability as the silica particle hydrophilicity was decreased from 100% SiOH to 76% SiOH is described in terms of the contact angles and the resulting energies of attachment for the silica particles at the water-CO(2) interface. The emulsion stability also increased with an increase in the particle concentration, CO(2) density, and shear rate. The dominant destabilization mechanism was creaming, whereas flocculation, coalescence, and Ostwald ripening played only a minor role over the CO(2) densities investigated. The ability to stabilize these emulsions with solid particles at CO(2) densities as low as 0.739 g/mL is particularly relevant in practical applications, given the difficulty in stabilizing these emulsions with surfactants, because of the unusually weak solvation of the surfactant tails by CO(2).


Subject(s)
Carbon Dioxide/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Chemical Phenomena , Chemistry, Physical , Emulsions/chemistry , Particle Size , Surface Properties , Time Factors , Water/chemistry
8.
J Colloid Interface Sci ; 272(2): 444-56, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15028510

ABSTRACT

The critical flocculation density (CFD), that is, the CO(2) density below which flocculation occurs, was studied for dilute water-in-CO(2) (W/C) miniemulsions stabilized with poly(1,1-dihydroperfluorooctyl methacrylate)-b-poly(ethylene oxide) (PFOMA-b-PEO) surfactants. The CFD, which was measured by turbidimetry, decreased as the PFOMA molecular weight was increased, the average droplet size was decreased, the surfactant loading was increased, and the temperature was increased. A simple model, which addressed both the van der Waals attraction between droplets and osmotic solvent-tail interactions, was in good qualitative agreement with the experimentally observed trends for the CFD and predicted a decrease in emulsion stability as the CO(2) density was lowered toward the theta density for PFOMA in bulk CO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...