Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 85(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31519660

ABSTRACT

Saccharomyces pastorianus strains are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus that have been domesticated for centuries in lager beer brewing environments. As sequences and structures of S. pastorianus genomes are being resolved, molecular mechanisms and evolutionary origins of several industrially relevant phenotypes remain unknown. This study investigates how maltotriose metabolism, a key feature in brewing, may have arisen in early S. eubayanus × S. cerevisiae hybrids. To address this question, we generated a nearly complete genome assembly of Himalayan S. eubayanus strains of the Holarctic subclade. This group of strains has been proposed to be the S. eubayanus subgenome origin of current S. pastorianus strains. The Himalayan S. eubayanus genomes harbored several copies of an S. eubayanusAGT1 (SeAGT1) α-oligoglucoside transporter gene with high sequence identity to genes encountered in S. pastorianus Although Himalayan S. eubayanus strains cannot grow on maltose and maltotriose, their maltose-hydrolase and SeMALT1 and SeAGT1 maltose transporter genes complemented the corresponding null mutants of S. cerevisiae Expression, in Himalayan S. eubayanus of a functional S. cerevisiae maltose metabolism regulator gene (MALx3) enabled growth on oligoglucosides. The hypothesis that the maltotriose-positive phenotype in S. pastorianus is a result of heterosis was experimentally tested by constructing an S. cerevisiae × S. eubayanus laboratory hybrid with a complement of maltose metabolism genes that resembles that of current S. pastorianus strains. The ability of this hybrid to consume maltotriose in brewer's wort demonstrated regulatory cross talk between subgenomes and thereby validated this hypothesis. These results support experimentally the new postulated hypothesis on the evolutionary origin of an essential phenotype of lager brewing strains and valuable knowledge for industrial exploitation of laboratory-made S. pastorianus-like hybrids.IMPORTANCES. pastorianus, an S. cerevisiae × S. eubayanus hybrid, is used for production of lager beer, the most produced alcoholic beverage worldwide. It emerged by spontaneous hybridization and colonized early lager brewing processes. Despite accumulation and analysis of genome sequencing data of S. pastorianus parental genomes, the genetic blueprint of industrially relevant phenotypes remains unresolved. Assimilation of maltotriose, an abundant sugar in wort, has been postulated to be inherited from the S. cerevisiae parent. Here, we demonstrate that although Asian S. eubayanus isolates harbor a functional maltotriose transporter SeAGT1 gene, they are unable to grow on α-oligoglucosides, but expression of S. cerevisiae regulator MAL13 (ScMAL13) was sufficient to restore growth on trisaccharides. We hypothesized that the S. pastorianus maltotriose phenotype results from regulatory interaction between S. cerevisiae maltose transcription activator and the promoter of SeAGT1 We experimentally confirmed the heterotic nature of the phenotype, and thus these results provide experimental evidence of the evolutionary origin of an essential phenotype of lager brewing strains.


Subject(s)
Genome, Fungal , Hybrid Vigor , Saccharomyces cerevisiae/genetics , Saccharomyces/genetics , Trisaccharides/metabolism , Beer/microbiology , Fermentation , Genetic Markers , Hybridization, Genetic , Monosaccharide Transport Proteins/genetics , Phylogeny , Saccharomyces/metabolism , Saccharomyces cerevisiae Proteins/genetics , Symporters/genetics
2.
Front Microbiol ; 9: 1640, 2018.
Article in English | MEDLINE | ID: mdl-30100898

ABSTRACT

Saccharomyces pastorianus is an interspecies hybrid between S. cerevisiae and S. eubayanus. The identification of the parental species of S. pastorianus enabled the de novo reconstruction of hybrids that could potentially combine a wide array of phenotypic traits. Lager yeasts are characterized by their inability to decarboxylate ferulic acid present in wort, a phenotype also known as Pof - (phenolic off-flavor). However, all known S. eubayanus strains characterized so far produce clove-like aroma specific of 4-vinyl guaiacol, a decarboxylated form of ferulic acid. This study explored a non-GMO approach to construct Pof -S. eubayanus variants derived from the parental strain S. eubayanus CBS 12357. To rapidly screen a population of UV-mutagenized cells two complementary assays were developed. The first assay was based on the difference of light absorption spectra of ferulic acid and 4-vinyl guaiacol, while the second was based on the difference of sensitivity of Pof - and Pof+ strains to cinnamic acid. The S. eubayanus variant HTSE042 was selected and was confirmed not to produce 4-vinyl guaiacol. Whole genome sequencing revealed that this variant lost the subtelomeric region of the CHRXIII right arm that carried the two clustered genes SePAD1- SeFDC1 whose deletion in a naïve S. eubayanus strain (CBS 12357/FM1318) resulted in an identical phenotype. Subsequently, the Pof - variant was crossed with a Pof-S. cerevisiae partner. The resulting hybrid was not able to convert ferulic acid demonstrating the undisputable value of the mutagenized variant HTSE042 to eventually construct S. cerevisiae × S. eubayanus hybrids with phenotypic characteristics of S. pastorianus.

3.
J Biol Chem ; 282(14): 10243-51, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17251183

ABSTRACT

Growth temperature has a profound impact on the kinetic properties of enzymes in microbial metabolic networks. Activities of glycolytic enzymes in Saccharomyces cerevisiae were up to 7.5-fold lower when assayed at 12 degrees C than at 30 degrees C. Nevertheless, the in vivo glycolytic flux in chemostat cultures (dilution rate: 0.03 h(-1)) grown at these two temperatures was essentially the same. To investigate how yeast maintained a constant glycolytic flux despite the kinetic challenge imposed by a lower growth temperature, a systems approach was applied that involved metabolic flux analysis, transcript analysis, enzyme activity assays, and metabolite analysis. Expression of hexose-transporter genes was affected by the growth temperature, as indicated by differential transcription of five HXT genes and changed zero trans-influx kinetics of [(14)C]glucose transport. No such significant changes in gene expression were observed for any of the glycolytic enzymes. Fermentative capacity (assayed off-line at 30 degrees C), which was 2-fold higher in cells grown at 12 degrees C, was therefore probably controlled predominantly by glucose transport. Massive differences in the intracellular concentrations of nucleotides (resulting in an increased adenylate energy charge at low temperature) and glycolytic intermediates indicated a dominant role of metabolic control as opposed to gene expression in the adaptation of glycolytic enzyme activity to different temperatures. In evolutionary terms, this predominant reliance on metabolic control of a central pathway, which represents a significant fraction of the cellular protein of the organism, may be advantageous to limit the need for protein synthesis and degradation during adaptation to diurnal temperature cycles.


Subject(s)
Gene Expression Regulation, Fungal/physiology , Hexoses/metabolism , Monosaccharide Transport Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/growth & development , Anaerobiosis/physiology , Biological Evolution , Biological Transport/physiology , Cold Temperature , Kinetics , Saccharomyces cerevisiae/cytology , Transcription, Genetic/physiology
4.
Metab Eng ; 8(2): 91-101, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16253533

ABSTRACT

Based on assumed reaction network structures, NADPH availability has been proposed to be a key constraint in beta-lactam production by Penicillium chrysogenum. In this study, NADPH metabolism was investigated in glucose-limited chemostat cultures of an industrial P. chrysogenum strain. Enzyme assays confirmed the NADP(+)-specificity of the dehydrogenases of the pentose-phosphate pathway and the presence of NADP(+)-dependent isocitrate dehydrogenase. Pyruvate decarboxylase/NADP(+)-linked acetaldehyde dehydrogenase and NADP(+)-linked glyceraldehyde-3-phosphate dehydrogenase were not detected. Although the NADPH requirement of penicillin-G-producing chemostat cultures was calculated to be 1.4-1.6-fold higher than that of non-producing cultures, in vitro measured activities of the major NADPH-providing enzymes were the same. Isolated mitochondria showed high rates of antimycin A-sensitive respiration of NADPH, thus indicating the presence of a mitochondrial NADPH dehydrogenase that oxidises cytosolic NADPH. The presence of this enzyme in P. chrysogenum might have important implications for stoichiometric modelling of central carbon metabolism and beta-lactam production and may provide an interesting target for metabolic engineering.


Subject(s)
Mitochondria/enzymology , Models, Biological , Multienzyme Complexes/metabolism , NADPH Dehydrogenase/metabolism , NADP/metabolism , Penicillium chrysogenum/cytology , Penicillium chrysogenum/metabolism , beta-Lactams/metabolism , Cell Proliferation , Computer Simulation , Energy Metabolism/physiology , Enzyme Activation
5.
FEMS Yeast Res ; 5(10): 925-34, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15949975

ABSTRACT

We have recently reported about a Saccharomyces cerevisiae strain that, in addition to the Piromyces XylA xylose isomerase gene, overexpresses the native genes for the conversion of xylulose to glycolytic intermediates. This engineered strain (RWB 217) exhibited unprecedentedly high specific growth rates and ethanol production rates under anaerobic conditions with xylose as the sole carbon source. However, when RWB 217 was grown on glucose-xylose mixtures, a diauxic growth pattern was observed with a relatively slow consumption of xylose in the second growth phase. After prolonged cultivation in an anaerobic, xylose-limited chemostat, a culture with improved xylose uptake kinetics was obtained. This culture also exhibited improved xylose consumption in glucose-xylose mixtures. A further improvement in mixed-sugar utilization was obtained by prolonged anaerobic cultivation in automated sequencing-batch reactors on glucose-xylose mixtures. A final single-strain isolate (RWB 218) rapidly consumed glucose-xylose mixtures anaerobically, in synthetic medium, with a specific rate of xylose consumption exceeding 0.9 gg(-1)h(-1). When the kinetics of zero trans-influx of glucose and xylose of RWB 218 were compared to that of the initial strain, a twofold higher capacity (V(max)) as well as an improved K(m) for xylose was apparent in the selected strain. It is concluded that the kinetics of xylose fermentation are no longer a bottleneck in the industrial production of bioethanol with yeast.


Subject(s)
Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Anaerobiosis , Biotechnology/methods , Carbohydrates , Culture Media , Fermentation , Saccharomyces cerevisiae/growth & development , Time Factors
6.
Microbiology (Reading) ; 151(Pt 5): 1657-1669, 2005 May.
Article in English | MEDLINE | ID: mdl-15870473

ABSTRACT

Prolonged cultivation of Saccharomyces cerevisiae in aerobic, glucose-limited chemostat cultures (dilution rate, 0.10 h(-1)) resulted in a progressive decrease of the residual glucose concentration (from 20 to 8 mg l(-1) after 200 generations). This increase in the affinity for glucose was accompanied by a fivefold decrease of fermentative capacity, and changes in cellular morphology. These phenotypic changes were retained when single-cell isolates from prolonged cultures were used to inoculate fresh chemostat cultures, indicating that genetic changes were involved. Kinetic analysis of glucose transport in an 'evolved' strain revealed a decreased Km, while Vmax was slightly increased relative to the parental strain. Apparently, fermentative capacity in the evolved strain was not controlled by glucose uptake. Instead, enzyme assays in cell extracts of the evolved strain revealed strongly decreased capacities of enzymes in the lower part of glycolysis. This decrease was corroborated by genome-wide transcriptome analysis using DNA microarrays. In aerobic batch cultures on 20 g glucose l(-1), the specific growth rate of the evolved strain was lower than that of the parental strain (0.28 and 0.37 h(-1), respectively). Instead of the characteristic instantaneous production of ethanol that is observed when aerobic, glucose-limited cultures of wild-type S. cerevisiae are exposed to excess glucose, the evolved strain exhibited a delay of approximately 90 min before aerobic ethanol formation set in. This study demonstrates that the effects of selection in glucose-limited chemostat cultures extend beyond glucose-transport kinetics. Although extensive physiological analysis offered insight into the underlying cellular processes, the evolutionary 'driving force' for several of the observed changes remains to be elucidated.


Subject(s)
Gene Expression Regulation, Fungal , Glucose/metabolism , Glycolysis , Saccharomyces cerevisiae/growth & development , Selection, Genetic , Aerobiosis , Biotechnology , Culture Media , Oligonucleotide Array Sequence Analysis , Proteome , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Time Factors , Transcription, Genetic
7.
Biochem J ; 379(Pt 2): 375-83, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-14717659

ABSTRACT

A sugar-transporter-encoding gene, mstA, which is a member of the major facilitator superfamily, has been cloned from a genomic DNA library of the filamentous fungus Aspergillus niger. To enable the functional characterization of MSTA, a full-length cDNA was expressed in a Saccharomyces cerevisiae strain deficient in hexose uptake. Uptake experiments using 14C-labelled monosaccharides demonstrated that although able to transport D-fructose ( K(m), 4.5+/-1.0 mM), D-xylose ( K(m), 0.3+/-0.1 mM) and D-mannose ( K(m), 60+/-20 microM), MSTA has a preference for D-glucose (K(m), 25+/-10 microM). pH changes associated with sugar transport indicate that MSTA catalyses monosaccharide/H+ symport. Expression of mstA in response to carbon starvation and upon transfer to poor carbon sources is consistent with a role for MSTA as a high-affinity transporter for D-glucose, D-mannose and D-xylose. Northern analysis has shown that mstA is subject to CreA-mediated carbon catabolite repression and pH regulation mediated by PacC. A. niger strains in which the mstA gene had been disrupted are phenotypically identical with isogenic reference strains when grown on 0.1-60 mM D-glucose, D-mannose, D-fructose or D-xylose. This indicates that A. niger possesses other transporters capable of compensating for the absence of MSTA.


Subject(s)
Aspergillus niger/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Membrane Proteins/genetics , Monosaccharide Transport Proteins/genetics , Aspergillus niger/cytology , Aspergillus niger/metabolism , Biological Transport , Carbohydrate Metabolism , Cloning, Molecular , Fungal Proteins/metabolism , Gene Deletion , Hydrogen-Ion Concentration , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Phenotype , Repressor Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Symporters , Transcription Factors/metabolism
8.
Eukaryot Cell ; 2(1): 143-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12582131

ABSTRACT

Nutrient-limited Saccharomyces cerevisiae cells rapidly resume proliferative growth when transferred into glucose medium. This is preceded by a rapid increase in CLN3, BCK2, and CDC28 mRNAs encoding cell cycle regulatory proteins that promote progress through Start. We have tested the ability of mutations in known glucose signaling pathways to block glucose induction of CLN3, BCK2, and CDC28. We find that loss of the Snf3 and Rgt2 glucose sensors does not block glucose induction, nor does deletion of HXK2, encoding the hexokinase isoenzyme involved in glucose repression signaling. Rapamycin blockade of the Tor nutrient sensing pathway does not block the glucose response. Addition of 2-deoxy glucose to the medium will not substitute for glucose. These results indicate that glucose metabolism generates the signal required for induction of CLN3, BCK2, and CDC28. In support of this conclusion, we find that addition of iodoacetate, an inhibitor of the glyceraldehyde-3-phosphate dehydrogenase step in yeast glycolysis, strongly downregulates the levels CLN3, BCK2, and CDC28 mRNAs. Furthermore, mutations in PFK1 and PFK2, which encode phosphofructokinase isoforms, inhibit glucose induction of CLN3, BCK2, and CDC28. These results indicate a link between the rate of glycolysis and the expression of genes that are critical for passage through G(1).


Subject(s)
Cell Cycle Proteins/biosynthesis , Cell Cycle/genetics , Energy Metabolism/genetics , Gene Expression Regulation, Fungal/genetics , Glucose/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , CDC28 Protein Kinase, S cerevisiae/biosynthesis , CDC28 Protein Kinase, S cerevisiae/genetics , Cell Cycle Proteins/genetics , Cyclins/biosynthesis , Cyclins/genetics , Enzyme Inhibitors/pharmacology , Glycolysis/drug effects , Glycolysis/genetics , Intracellular Signaling Peptides and Proteins , Mutation/genetics , Phosphofructokinase-1/genetics , Phosphofructokinase-2/genetics , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction/genetics , Up-Regulation/genetics
9.
FEMS Yeast Res ; 2(2): 165-72, 2002 May.
Article in English | MEDLINE | ID: mdl-12702304

ABSTRACT

In glucose-limited aerobic chemostat cultures of a wild-type Saccharomyces cerevisiae and a derived hxk2 null strain, metabolic fluxes were identical. However, the concentrations of intracellular metabolites, especially fructose 1,6-bisphosphate, and hexose-phosphorylating activities differed. Interestingly, the hxk2 null strain showed a higher maximal growth rate and higher Crabtree threshold dilution rate, revealing a higher oxidative capacity for this strain. After a pulse of glucose, aerobic glucose-limited cultures of wild-type S. cerevisiae displayed an overshoot in the intracellular concentrations of glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate before a new steady state was established, in contrast to the hxk2 null strain which reached a new steady state without overshoot of these metabolites. At low dilution rates the overshoot of intracellular metabolites in the wild-type strain coincided with the immediate production of ethanol after the glucose pulse. In contrast, in the hxk2 null strain the production of ethanol started gradually. However, in spite of the initial differences in ethanol production and dynamic behaviour of the intracellular metabolites, the steady-state fluxes after transition from glucose limitation to glucose excess were not significantly different in the wild-type strain and the hxk2 null strain at any dilution rate.


Subject(s)
Glucose/metabolism , Glycolysis , Hexokinase/metabolism , Saccharomyces cerevisiae/metabolism , Aerobiosis , Culture Media , Gene Deletion , Genes, Fungal , Hexokinase/deficiency , Hexokinase/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
10.
Microbiology (Reading) ; 145 ( Pt 12): 3447-3454, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10627042

ABSTRACT

The extent to which the transport of glucose across the plasma membrane of the yeast Saccharomyces bayanus controls the glycolytic flux was determined. The magnitude of control was quantified by measuring the effect of small changes in the activity of the glucose transport system on the rate of glucose consumption. Two effectors were used to modulate the activity of glucose transport: (i) maltose, a competitive inhibitor of the glucose transport system in S. bayanus (as well as in Saccharomyces cerevisiae) and (ii) extracellular glucose, the substrate of the glucose transport system. Two approaches were followed to derive from the experimental data the flux control coefficient of glucose transport on the glycolytic flux: (i) direct comparison of the steady-state glycolytic flux with the zero trans-influx of glucose and (ii) comparison of the change in glycolytic flux with the concomitant change in calculated glucose transport activity on variation of the extracellular glucose concentration. Both these approaches demonstrated that in cells of S. bayanus grown on glucose and harvested at the point of glucose exhaustion, a high proportion of the control of the glycolytic flux resides in the transport of glucose across the plasma membrane.


Subject(s)
Glucose/metabolism , Glycolysis , Saccharomyces/metabolism , Binding, Competitive , Biological Transport , Kinetics , Maltose/metabolism , Saccharomyces/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...