Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 55(20): 13834-13848, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34585576

ABSTRACT

From early April 2020, wildfires raged in the highly contaminated areas around the Chernobyl nuclear power plant (CNPP), Ukraine. For about 4 weeks, the fires spread around and into the Chernobyl exclusion zone (CEZ) and came within a few kilometers of both the CNPP and radioactive waste storage facilities. Wildfires occurred on several occasions throughout the month of April. They were extinguished, but weather conditions and the spread of fires by airborne embers and smoldering fires led to new fires starting at different locations of the CEZ. The forest fires were only completely under control at the beginning of May, thanks to the tireless and incessant work of the firefighters and a period of sustained precipitation. In total, 0.7-1.2 TBq 137Cs were released into the atmosphere. Smoke plumes partly spread south and west and contributed to the detection of airborne 137Cs over the Ukrainian territory and as far away as Western Europe. The increase in airborne 137Cs ranged from several hundred µBq·m-3 in northern Ukraine to trace levels of a few µBq·m-3 or even within the usual background level in other European countries. Dispersion modeling determined the plume arrival time and was helpful in the assessment of the possible increase in airborne 137Cs concentrations in Europe. Detections of airborne 90Sr (emission estimate 345-612 GBq) and Pu (up to 75 GBq, mostly 241Pu) were reported from the CEZ. Americium-241 represented only 1.4% of the total source term corresponding to the studied anthropogenic radionuclides but would have contributed up to 80% of the inhalation dose.


Subject(s)
Air Pollutants, Radioactive , Chernobyl Nuclear Accident , Fires , Wildfires , Air Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Europe , Ukraine
2.
Radiat Prot Dosimetry ; 185(1): 96-108, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-30590730

ABSTRACT

In the early phase of a nuclear reactor accident, in-vivo monitoring of impacted population would be highly useful to detect potential contamination during the passage of the cloud and to estimate the dose from inhalation of measured radionuclides. However, it would be important to take into account other exposure components: (1) inhalation of unmeasured radionuclides and (2) external irradiation from the plume and from the radionuclides deposited on the soil. This article presents a methodology to calculate coefficients used to convert in-vivo measurement results directly into doses, not only from the measured radionuclides but from all sources of exposure according to model-based projected doses. This early interpretation of in-vivo measurements will provide an initial indication of individual exposure levels. As an illustration, the methodology is applied to two scenarios of accidents affecting a nuclear power plant: a loss-of-coolant accident leading to core meltdown and a steam generator tube rupture accident.


Subject(s)
Computer Simulation , Inhalation Exposure/analysis , Iodine Radioisotopes/analysis , Nuclear Power Plants , Radiation Exposure/analysis , Radiation Monitoring/methods , Radioactive Hazard Release/statistics & numerical data , Disaster Planning , Humans , Radiation Dosage
3.
J Environ Radioact ; 151 Pt 2: 487-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26032189

ABSTRACT

The Fukushima nuclear accident resulted in the largest ever accidental release of artificial radionuclides in coastal waters. This accident has shown the importance of marine assessment capabilities for emergency response and the need to develop tools for adequately predicting the evolution and potential impact of radioactive releases to the marine environment. The French Institute for Radiological Protection and Nuclear Safety (IRSN) equips its emergency response centre with operational tools to assist experts and decision makers in the event of accidental atmospheric releases and contamination of the terrestrial environment. The on-going project aims to develop tools for the management of marine contamination events in French coastal areas. This should allow us to evaluate and anticipate post-accident conditions, including potential contamination sites, contamination levels and potential consequences. In order to achieve this goal, two complementary tools are developed: site-specific marine data sheets and a dedicated simulation tool (STERNE, Simulation du Transport et du transfert d'Eléments Radioactifs dans l'environNEment marin). Marine data sheets are used to summarize the marine environment characteristics of the various sites considered, and to identify vulnerable areas requiring implementation of population protection measures, such as aquaculture areas, beaches or industrial water intakes, as well as areas of major ecological interest. Local climatological data (dominant sea currents as a function of meteorological or tidal conditions) serving as the basis for an initial environmental sampling strategy is provided whenever possible, along with a list of possible local contacts for operational management purposes. The STERNE simulation tool is designed to predict radionuclide dispersion and contamination in seawater and marine species by incorporating spatio-temporal data. 3D hydrodynamic forecasts are used as input data. Direct discharge points or atmospheric deposition source terms can be taken into account. STERNE calculates Eulerian radionuclide dispersion using advection and diffusion equations established offline from hydrodynamic calculations. A radioecological model based on dynamic transfer equations is implemented to evaluate activity concentrations in aquatic organisms. Essential radioecological parameters (concentration factors and single or multicomponent biological half-lives) have been compiled for main radionuclides and generic marine species (fish, molluscs, crustaceans and algae). Dispersion and transfer calculations are performed simultaneously on a 3D grid. Results can be plotted on maps, with possible tracking of spatio-temporal evolution. Post-processing and visualization can then be performed.


Subject(s)
Disasters , Radiation Monitoring/methods , Radioactive Hazard Release , Radioisotopes/analysis , Seawater/analysis , Water Pollutants, Radioactive/analysis , Aquatic Organisms/metabolism , France , Models, Theoretical , Radiation Monitoring/instrumentation , Radioisotopes/metabolism , Water Pollutants, Radioactive/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL