Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 919: 170691, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38325468

ABSTRACT

Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.


Subject(s)
Ecosystem , Nickel , Nickel/analysis , Malaysia , Farms , Calcium/metabolism , Agriculture , Soil , Plants/metabolism
2.
Environ Pollut ; 336: 122477, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37652225

ABSTRACT

In rural areas, nitrate concentrations in surface waters most often originate from the leaching of excess N fertilizer in agricultural lands, whereas forested catchments often have good water quality. However, Douglas-fir plantations may induce nitrogen cycle unbalances which may lead to an excess of nitrate production in the soil. We hypothesize that the excess of production of nitrate in the soil and nitrate leaching to streamwater is greater in catchments planted with Douglas fir. We used paired catchments in both France and Luxembourg with different land covers (Douglas-fir, Spruce, Deciduous, Grassland and clearcut) which were monitored over a 3-5 year period in order to assess the effect of Douglas-fir plantations on the chemical composition of surface water. Nitrate concentration in the soil and groundwater were also monitored. The results show that nitrate concentrations in streams draining Douglas-fir catchments were two to ten times higher than in streams draining other land covers, but were similar to the clearcut catchment. Nitrate concentrations under Douglas-fir in groundwater (up to 50 mg L-1) and in the soil were also higher than under all other land covers. Soil nitrate concentration was related to stream nitrate concentration. This suggests that soil processes, through excessive nitrate production under Douglas-fir, are driving the nitrate concentration in the stream water and our hypothesis of a transfer of a fairly large proportion of this excessive production from the soil to the stream is supported. This study also shows that nitrate concentrations in surface and ground waters in rural areas could also originate from Douglas fir forested catchments. The impact of Douglas-fir is nevertheless reduced downstream through a dilution effect: mixing tree species at the catchment scale could thus be a solution to mitigate the effect of Douglas-fir on nitrate concentration in surface waters.


Subject(s)
Groundwater , Pseudotsuga , Nitrates/analysis , Luxembourg , Environmental Monitoring , Soil , Europe , France
SELECTION OF CITATIONS
SEARCH DETAIL
...