Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 476, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724536

ABSTRACT

Estimating growing stock is one of the main objectives of forest inventories. It refers to the stem volume of individual trees which is typically derived by models as it cannot be easily measured directly. These models are thus based on measurable tree dimensions and their parameterization depends on the available empirical data. Historically, such data were collected by measurements of tree stem sizes, which is very time- and cost-intensive. Here, we present an exceptionally large dataset with section-wise stem measurements on 40'349 felled individual trees collected on plots of the Experimental Forest Management project. It is a revised and expanded version of previously unpublished data and contains the empirically derived coarse (diameter ≥7 cm) and fine branch volume of 27'297 and 18'980, respectively, individual trees. The data were collected between 1888 and 1974 across Switzerland covering a large topographic gradient and a diverse species range and can thus support estimations and verification of volume functions also outside Switzerland including the derivation of whole tree volume in a consistent manner.


Subject(s)
Trees , Switzerland , Plant Stems/anatomy & histology , Forests
2.
Sci Total Environ ; 857(Pt 3): 159694, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302424

ABSTRACT

Storms represent a major disturbance factor in forest ecosystems, but the effects of windthrows on soil organic carbon (SOC) stocks are poorly quantified. Here, we assessed the SOC stocks of windthrown forests at 19 sites across Switzerland spanning an elevation gradient from 420 to 1550 m, encompassing a strong climatic gradient. Results show that the effect size of disturbance on SOC stocks increases with the size of the initial SOC stocks. The largest windthrow-induced SOC losses of up to 29 t C ha-1 occurred in high-elevation forests with a harsh climate developing thick organic layers. In contrast, SOC stocks of low-elevation forests with thin organic layers were hardly affected. A mineralization study further revealed high elevation forests to store higher amounts of easily mineralizable C in thick organic layers that got lost following windthrow. These findings are supported by a meta-analysis of available windthrow studies, showing an increase of storm-induced SOC losses with the size of the initial SOC stocks. Modelling simulations further indicate longer-lasting SOC losses and a slower recovery of SOC stocks after windthrow at high compared to low elevations, due to a slower regeneration of mountain forests and associated lower C inputs into soils in a harsh climate. Upscaling the experimental findings/observed patterns by linking them to a data base of Swiss forest soils shows a total SOC loss of ∼0.4 Mt. C for the whole forested area of Switzerland after two major storm events, counteracting the forest net carbon sink of decades. Our study provides strong evidence that the vulnerability of SOC stocks to windthrow is particularly high in forests featuring thick and slowly forming organic layers, such as mountain soils. Thus, the risk of losing SOC to more frequent windthrows in mountain forests strongly limits their potential to mitigate climate change.


Subject(s)
Carbon , Soil , Ecosystem , Forests , Carbon Sequestration
3.
Sci Total Environ ; 599-600: 1171-1180, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28511362

ABSTRACT

Accurate carbon-balance accounting in forest soils is necessary for the development of climate change policy. However, changes in soil organic carbon (SOC) occur slowly and these changes may not be captured through repeated soil inventories. Simulation models may be used as alternatives to SOC measurement. The Yasso07 model presents a suitable alternative because most of the data required for the application are readily available in countries with common forest surveys. In this study, we test the suitability of Yasso07 for simulating SOC stocks and stock changes in a variety of European forests affected by different climatic, land use and forest management conditions and we address country-specific cases with differing resources and data availability. The simulated SOC stocks differed only slightly from measured data, providing realistic, reasonable mean SOC estimations per region or forest type. The change in the soil carbon pool over time, which is the target parameter for SOC reporting, was generally found to be plausible although not in the case of Mediterranean forest soils. As expected under stable forest management conditions, both land cover and climate play major roles in determining the SOC stock in forest soils. Greater mean SOC stocks were observed in northern latitudes (or at higher altitude) than in southern latitudes (or plains) and conifer forests were found to store a notably higher amount of SOC than broadleaf forests. Furthermore, as regards change in SOC, an inter-annual sink effect was identified for most of the European forest types studied. Our findings corroborate the suitability of Yasso07 to assess the impact of forest management and land use change on the SOC balance of forests soils, as well as to accurately simulate SOC in dead organic matter (DOM) and mineral soil pools separately. The obstacles encountered when applying the Yasso07 model reflect a lack of available input data. Future research should focus on improving our knowledge of C inputs from compartments such as shrubs, herbs, coarse woody debris and fine roots. This should include turnover rates and quality of the litter in all forest compartments from a wider variety of tree species and sites. Despite the limitations identified, the SOC balance estimations provided by the Yasso07 model are sufficiently complete, accurate and transparent to make it suitable for reporting purposes such as those required under the UNFCCC (United Nations Framework Convention on Climate Change) and KP (Kyoto Protocol) for a wide range of forest conditions in Europe.

SELECTION OF CITATIONS
SEARCH DETAIL
...