Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 30(32): 10844-50, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20702713

ABSTRACT

Brain cholesterol, which is synthesized locally, is a major component of myelin and cell membranes and participates in neuronal functions, such as membrane trafficking, signal transduction, neurotransmitter release, and synaptogenesis. Here we show that brain cholesterol biosynthesis is reduced in multiple transgenic and knock-in Huntington's disease (HD) rodent models, arguably dependent on deficits in mutant astrocytes. Mice carrying a progressively increased number of CAG repeats show a more evident reduction in cholesterol biosynthesis. In postnatal life, the cholesterol-dependent activities of neurons mainly rely on the transport of cholesterol from astrocytes on ApoE-containing particles. Our data show that mRNA levels of cholesterol biosynthesis and efflux genes are severely reduced in primary HD astrocytes, along with impaired cellular production and secretion of ApoE. Consistently, in CSF of HD mice, ApoE is mostly associated with smaller lipoproteins, indicating reduced cholesterol transport on ApoE-containing lipoproteins circulating in the HD brain. These findings indicate that cholesterol defect is robustly marked in HD animals, implying that strategies aimed at selectively modulating brain cholesterol metabolism might be of therapeutic significance.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Cholesterol/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Analysis of Variance , Animals , Animals, Genetically Modified , Animals, Newborn , Apolipoproteins E/cerebrospinal fluid , Brain/pathology , Cells, Cultured , Cholesterol/biosynthesis , Disease Models, Animal , Female , Huntington Disease/cerebrospinal fluid , Huntington Disease/genetics , Male , Mice , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathology , Rats , Sterols/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synaptosomes/metabolism , Synaptosomes/pathology , Trinucleotide Repeat Expansion/genetics
2.
Mol Neurodegener ; 4: 3, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-19133136

ABSTRACT

Huntington's disease (HD) is one of the most common autosomal dominant inherited, neurodegenerative disorders. It is characterized by progressive motor, emotional and cognitive dysfunction. In addition metabolic abnormalities such as wasting and altered energy expenditure are increasingly recognized as clinical hallmarks of the disease. HD is caused by an unstable CAG repeat expansion in the HD gene (HTT), localized on chromosome 4p16.3. The number of CAG repeats in the HD gene is the main predictor of disease-onset, but the remaining variation is strongly heritable. Transcriptional dysregulation, mitochondrial dysfunction and enhanced oxidative stress have been implicated in the pathogenesis. Recent studies suggest that PGC-1alpha, a transcriptional master regulator of mitochondrial biogenesis and metabolism, is defective in HD. A genome wide search for modifier genes of HD age-of-onset had suggested linkage at chromosomal region 4p16-4p15, near the locus of PPARGC1A, the gene coding for PGC-1alpha. We now present data of 2-loci PPARGC1A block 2 haplotypes, showing an effect upon age-at-onset in 447 unrelated HD patients after statistical consideration of CAG repeat lengths in both HTT alleles. Block 1 haplotypes were not associated with the age-at-onset. Homozygosity for the 'protective' block 2 haplotype was associated with a significant delay in disease onset. To our knowledge this is the first study to show clinically relevant effects of the PGC-1alpha system on the course of Huntington's disease in humans.

3.
Mov Disord ; 23(15): 2232-8, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18759344

ABSTRACT

Onset of genetically determined neurodegenerative diseases is difficult to specify because of their insidious and slowly progressive nature. This is especially true for spinocerebellar ataxia (SCA) because of varying affection of many parts of the nervous system and huge variability of symptoms. We investigated early symptoms in 287 patients with SCA1, SCA2, SCA3, or SCA6 and calculated the influence of CAG repeat length on age of onset depending on (1) the definition of disease onset, (2) people defining onset, and (3) duration of symptoms. Gait difficulty was the initial symptom in two-thirds of patients. Double vision, dysarthria, impaired hand writing, and episodic vertigo preceded ataxia in 4% of patients, respectively. Frequency of other early symptoms did not differ from controls and was regarded unspecific. Data about disease onset varied between patients and relatives for 1 year or more in 44% of cases. Influence of repeat length on age of onset was maximum when onset was defined as beginning of permanent gait disturbance and cases with symptoms for more than 10 years were excluded. Under these conditions, CAG repeat length determined 64% of onset variability in SCA1, 67% in SCA2, 46% in SCA3, and 41% in SCA6 demonstrating substantial influence of nonrepeat factors on disease onset in all SCA subtypes. Identification of these factors is of interest as potential targets for disease modifying compounds. In this respect, recognition of early symptoms that develop before onset of ataxia is mandatory to determine the shift from presymptomatic to affected status in SCA.


Subject(s)
Spinocerebellar Ataxias , Trinucleotide Repeat Expansion/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Ataxin-1 , Ataxin-3 , Ataxins , Calcium Channels/genetics , DNA Mutational Analysis , Female , Gait Disorders, Neurologic/complications , Humans , Linear Models , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Spinocerebellar Ataxias/classification , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/genetics , Young Adult
4.
Neurogenetics ; 8(4): 289-99, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17703324

ABSTRACT

Friedreich ataxia (FRDA) is associated with a GAA-trinucleotide-repeat expansion in the first intron of the FXN gene (9q13-21), which encodes a 210-amino-acid protein named frataxin. More than 95% of patients are homozygous for 90-1,300 repeat expansion on both alleles. The remaining patients have been shown to be compound heterozygous for a GAA expansion on one allele and a micromutation on the other. The reduction of both frataxin messenger RNA (mRNA) and protein was found to be proportional to the size of the smaller GAA repeat allele. We report a clinical and molecular study of 12 families in which classical FRDA patients were heterozygous for a GAA expansion on one allele. Sequence analysis of the FXN gene allowed the identification of the second disease-causing mutation in each heterozygous patient, which makes this the second largest series of FRDA compound heterozygotes reported thus far. We have identified seven mutations, four of which are novel. Five patients carried missense mutations, whereas eight patients carried null (frameshift or nonsense) mutations. Quantitation of frataxin levels in lymphoblastoid cell lines derived from six compound heterozygous patients showed a statistically significant correlation of residual protein levels with the age at onset (r = 0.82, p < 0.05) or the GAA expansion (r = -0.76, p < 0.1). In the group of patients heterozygous for a null allele, a strong (r = -0.94, p < 0.01) correlation was observed between the size of GAA expansion and the age at onset, thus lending support to the hypothesis that the residual function of frataxin in patients' cells derive exclusively from the expanded allele.


Subject(s)
Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Point Mutation , Adolescent , Adult , Age of Onset , Alleles , Base Sequence , Cell Line , Child , Codon, Nonsense , DNA Primers/genetics , Female , Frameshift Mutation , Friedreich Ataxia/metabolism , Heterozygote , Humans , Iron-Binding Proteins/metabolism , Italy , Male , Middle Aged , Mutation, Missense , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion , Frataxin
5.
Hum Genet ; 120(2): 285-92, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16847693

ABSTRACT

The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington's disease (HD) and determines 42-73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.


Subject(s)
Huntington Disease/epidemiology , Huntington Disease/genetics , Polymorphism, Genetic , Acyltransferases , Adaptor Proteins, Signal Transducing , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Child , Child, Preschool , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Huntingtin Protein , Huntington Disease/metabolism , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Receptors, Kainic Acid/genetics , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , GluK2 Kainate Receptor
6.
Neurogenetics ; 7(1): 27-30, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16369839

ABSTRACT

An expanded polyglutamine stretch in the huntingtin protein has been identified as the pathogenetic cause of Huntington's disease (HD). Although the length of the expanded polyglutamine repeat is inversely correlated with the age-at-onset, additional genetic factors are thought to modify the variance in the disease onset. As linkage analysis suggested a modifier locus on chromosome 4p, we investigated the functional relevance of S18Y polymorphism of the ubiquitin carboxy-terminal hydrolase L1 in 946 Caucasian HD patients. In this group, the allelic variation on locus S18Y is responsible for 1.1% of the variance in the HD age-at-onset, and the rare Y allele is associated with younger-aged cases.


Subject(s)
Huntington Disease/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Polymorphism, Genetic , Ubiquitin Thiolesterase/genetics , Age of Onset , Humans , Huntingtin Protein , Huntington Disease/physiopathology , Trinucleotide Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...