Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 290: 133241, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34896428

ABSTRACT

The toxic influence of soot microparticles on terrestrial organisms has been well studied, although there is scarce data on how microparticles could affect hydrobionts. We performed a first-ever study of the short-term (5 days) impact of furnace soot (0.005 g/L) on the structural and functional features of gill cells in the Baikal Sculpin species Paracottus knerii, Dybowski, 1874. The soot samples used in the experiment were composed of small (10-100 nm) particles and larger (up to 20 µm) aggregates. The dominant fractions of the polycyclic aromatic hydrocarbons of these microparticles were phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzofluoranthenes, benzopyrenes, indeno[1,2,3-c,d]pyrenes, and benzo[ghi]perylene. Trace element analysis of the soot detected the presence of C, S, Si, Al, Ca, K, Mg, P, and Fe. The gill condition was assessed with electron scanning, transmission, and laser confocal microscopy. Soot induces degenerative changes in the macrostructure and surface of secondary lamellae and increases mucus production in fish gills. A decrease in mitochondrial activity, an increase in reactive oxygen species production, and an increase in the frequency of programmed cell death in gill epithelium were observed under the influence of soot. In chloride cells, an induction of macroautophagy was detected. In general, the changes in fish gills after the short-term influence of soot microparticles indicate the stress of respiratory and osmotic regulation systems in fish. The data obtained are important for forming a coherent picture of the impact of soot on hydrobionts and for developing bioindication methods for evaluating the risks of their influence on aquatic ecosystems.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soot , Animals , Ecosystem , Gills/chemistry , Polycyclic Aromatic Hydrocarbons/analysis
2.
Mitochondrial DNA B Resour ; 6(11): 3190-3192, 2021.
Article in English | MEDLINE | ID: mdl-34660899

ABSTRACT

In this study, five new mitogenomes from four endemic Lake Baikal sculpins were determined: Cottocomephorus grewingkii (Dybowski, 1874) (GB#MW732165), Cottocomephorus inermis (Yakovlev, 1890) (GB#MW732163), and Paracottus knerii (Dybowski, 1874) (GB#MW732164) (Family Cottocomephoridae - Bighead sculpins), and from two specimens of Procottus major Taliev, 1949 (GB##MW732166, MW732167) from Family Abyssocottidae (Deep-water sculpins). Together with recently published mitogenomes of Baikal Oilfishes (Sandel et al. 2017), the first mitogenome-based phylogenetic tree for all three endemic Baikal sculpin families is presented. Complete mitogenome phylogeny supports the monophyletic origin of the lake Baikal sculpins species flock, but does not support the monophyly of the family Cottocomephoridae (Bighead sculpins).

SELECTION OF CITATIONS
SEARCH DETAIL
...