Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 133(45): 18148-60, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-21981763

ABSTRACT

The α-keto acid-dependent dioxygenases are a major subgroup within the O(2)-activating mononuclear nonheme iron enzymes. For these enzymes, the resting ferrous, the substrate plus cofactor-bound ferrous, and the Fe(IV)═O states of the reaction have been well studied. The initial O(2)-binding and activation steps are experimentally inaccessible and thus are not well understood. In this study, NO is used as an O(2) analogue to probe the effects of α-keto acid binding in 4-hydroxyphenylpyruvate dioxygenase (HPPD). A combination of EPR, UV-vis absorption, magnetic circular dichroism (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies in conjunction with computational models is used to explore the HPPD-NO and HPPD-HPP-NO complexes. New spectroscopic features are present in the α-keto acid bound {FeNO}(7) site that reflect the strong donor interaction of the α-keto acid with the Fe. This promotes the transfer of charge from the Fe to NO. The calculations are extended to the O(2) reaction coordinate where the strong donation associated with the bound α-keto acid promotes formation of a new, S = 1 bridged Fe(IV)-peroxy species. These studies provide insight into the effects of a strong donor ligand on O(2) binding and activation by Fe(II) in the α-keto acid-dependent dioxygenases and are likely relevant to other subgroups of the O(2) activating nonheme ferrous enzymes.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Oxygen/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Molecular Structure , Oxygen/chemistry
2.
J Am Chem Soc ; 133(40): 15979-91, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21870808

ABSTRACT

The O(2) activating mononuclear nonheme iron enzymes generally have a common facial triad (two histidine and one carboxylate (Asp or Glu) residue) ligating Fe(II) at the active site. Exceptions to this motif have recently been identified in nonheme enzymes, including a 3His triad in the diketone cleaving dioxygenase Dke1. This enzyme is used to explore the role of the facial triad in directing reactivity. A combination of spectroscopic studies (UV-vis absorption, MCD, and resonance Raman) and DFT calculations is used to define the nature of the binding of the α-keto acid, 4-hydroxyphenlpyruvate (HPP), to the active site in Dke1 and the origin of the atypical cleavage (C2-C3 instead of C1-C2) pattern exhibited by this enzyme in the reaction of α-keto acids with dioxygen. The reduced charge of the 3His triad induces α-keto acid binding as the enolate dianion, rather than the keto monoanion, found for α-keto acid binding to the 2His/1 carboxylate facial triad enzymes. The mechanistic insight from the reactivity of Dke1 with the α-keto acid substrate is then extended to understand the reaction mechanism of this enzyme with its native substrate, acac. This study defines a key role for the 2His/1 carboxylate facial triad in α-keto acid-dependent mononuclear nonheme iron enzymes in stabilizing the bound α-keto acid as a monoanion for its decarboxylation to provide the two additional electrons required for O(2) activation.


Subject(s)
Acinetobacter/enzymology , Dioxygenases/metabolism , Keto Acids/metabolism , Oxygen/metabolism , Acinetobacter/chemistry , Acinetobacter/metabolism , Binding Sites , Dioxygenases/chemistry , Ketones/metabolism , Models, Molecular , Protein Binding , Spectrum Analysis
3.
Biochemistry ; 49(49): 10516-25, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21028901

ABSTRACT

DNA protection during starvation (Dps) proteins are miniferritins found in bacteria and archaea that provide protection from uncontrolled Fe(II)/O radical chemistry; thus the catalytic sites are targets for antibiotics against pathogens, such as anthrax. Ferritin protein cages synthesize ferric oxymineral from Fe(II) and O(2)/H(2)O(2), which accumulates in the large central cavity; for Dps, H(2)O(2) is the more common Fe(II) oxidant contrasting with eukaryotic maxiferritins that often prefer dioxygen. To better understand the differences in the catalytic sites of maxi- versus miniferritins, we used a combination of NIR circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) to study Fe(II) binding to the catalytic sites of the two Bacillus anthracis miniferritins: one in which two Fe(II) react with O(2) exclusively (Dps1) and a second in which both O(2) or H(2)O(2) can react with two Fe(II) (Dps2). Both result in the formation of iron oxybiomineral. The data show a single 5- or 6-coordinate Fe(II) in the absence of oxidant; Fe(II) binding to Dps2 is 30× more stable than Dps1; and the lower limit of K(D) for binding a second Fe(II), in the absence of oxidant, is 2-3 orders of magnitude weaker than for the binding of the single Fe(II). The data fit an equilibrium model where binding of oxidant facilitates formation of the catalytic site, in sharp contrast to eukaryotic M-ferritins where the binuclear Fe(II) centers are preformed before binding of O(2). The two different binding sequences illustrate the mechanistic range possible for catalytic sites of the family of ferritins.


Subject(s)
Bacillus anthracis , Bacterial Proteins/metabolism , Circular Dichroism , DNA-Binding Proteins/metabolism , Ferritins/metabolism , Hydrogen Peroxide/metabolism , Oxygen/physiology , Bacterial Proteins/chemistry , Binding Sites , Catalytic Domain/physiology , Circular Dichroism/methods , DNA-Binding Proteins/chemistry , Evolution, Molecular , Ferritins/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Hydrogen Peroxide/chemistry , Magnetic Resonance Spectroscopy , Oxidants/chemistry , Oxidants/metabolism , Oxygen/chemistry , Substrate Specificity/physiology
4.
Biochemistry ; 49(32): 6945-52, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20695531

ABSTRACT

The oxygen activating mononuclear non-heme ferrous enzymes catalyze a diverse range of chemistry yet typically maintain a common structural motif: two histidines and a carboxylate coordinating the iron center in a facial triad. A new Fe(II) coordinating triad has been observed in two enzymes, diketone-cleaving dioxygenase, Dke1, and cysteine dioxygenase (CDO), and is composed of three histidine residues. The effect of this three-His motif in Dke1 on the geometric and electronic structure of the Fe(II) center is explored via a combination of absorption, CD, MCD, and VTVH MCD spectroscopies and DFT calculations. This geometric and electronic structure of the three-His triad is compared to that of the classical (2-His-1-carboxylate) facial triad in the alpha-ketoglutarate (alphaKG)-dependent dioxygenases clavaminate synthase 2 (CS2) and hydroxyphenylpyruvate dioxygenase (HPPD). Comparison of the ligand fields at the Fe(II) shows little difference between the three-His and 2-His-1-carboxylate facial triad sites. Acetylacetone, the substrate for Dke1, will also bind to HPPD and is identified as a strong donor, similar to alphaKG. The major difference between the three-His and 2-His-1-carboxylate facial triad sites is in MLCT transitions observed for both types of triads and reflects their difference in charge. These studies provide insight into the effects of perturbation of the facial triad ligation of the non-heme ferrous enzymes on their geometric and electronic structure and their possible contributions to reactivity.


Subject(s)
Dioxygenases/chemistry , Dioxygenases/metabolism , Nonheme Iron Proteins/chemistry , Nonheme Iron Proteins/metabolism , Circular Dichroism , Computational Biology , Cysteine Dioxygenase/chemistry , Cysteine Dioxygenase/metabolism , Pentanones/metabolism
5.
Biochemistry ; 49(6): 1176-82, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20078029

ABSTRACT

Isopenicillin N synthase (IPNS) can have both oxidase and oxygenase activity depending on the substrate. For the native substrate, ACV, oxidase activity exists; however, for the substrate analogue ACOV, which lacks an amide nitrogen, IPNS exhibits oxygenase activity. The potential energy surfaces for the O-O bond elongation and cleavage were calculated for three different reactions: homolytic cleavage via traditional Fenton chemistry, heterolytic cleavage, and nucleophilic attack. These surfaces show that the hydroperoxide-ferrous intermediate, formed by O(2)-activated H atom abstraction from the substrate, can exploit different reaction pathways and that interactions with the substrate govern the pathway. The hydrogen bonds from hydroperoxide to the amide nitrogen of ACV polarize the sigma* orbital of the peroxide toward the proximal oxygen, facilitating heterolytic cleavage. For the substrate analogue ACOV, this hydrogen bond is no longer present, leading to nucleophilic attack on the substrate intermediate C-S bond. After cleavage of the hydroperoxide, the two reaction pathways proceed with minimal barriers, resulting in the closure of the beta-lactam ring for the oxidase activity (ACV) or formation of the thiocarboxylate for oxygenase activity (ACOV).


Subject(s)
Aspergillus nidulans/enzymology , Fungal Proteins/chemistry , Oxidoreductases/chemistry , Oxygenases/chemistry , Electron Transport , Enzyme Activation , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Fungal Proteins/metabolism , Hydrogen Bonding , Hydrolysis , Oxidoreductases/metabolism , Oxygenases/metabolism , Penicillins , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Peroxides/chemistry , Peroxides/metabolism , Substrate Specificity , Thermodynamics
6.
Biochemistry ; 49(5): 996-1004, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20050606

ABSTRACT

Diketone cleaving enzyme (Dke1) is a dioxygenase with an atypical, three-histidine-ligated, mononuclear non-heme Fe(2+) center. To assess the role in enzyme catalysis of the hydrophilic residues in the active site pocket, residues Glu98, Arg80, Tyr70, and Thr107 were subjected to mutational analysis. Steady state and pre-steady state kinetics indicated a role for Glu98 in promoting both substrate binding and O(2) reduction. Additionally, the Glu98 substitution eliminated the pH dependence of substrate binding (k(cat)(app)/K(M)(app)-pH profile) present in wild-type Dke1 (pK(a) = 6.3 +/- 0.4 and 8.4 +/- 0.4). MCD spectroscopy revealed that the Glu98 --> Gln mutation leads to the conversion of the six-coordinate (6C) resting Fe(2+) center present in the wild-type enzyme at pH 7.0 to a mixture of five-coordinate (5C) and 6C sites. The 6C geometry was restored with a pH shift to 9.5 which also resulted in ligand field (LF) energy splittings identical to that found for wild-type (WT) Dke1 at pH 9.5. In WT Dke1, these LF transitions are shifted up in energy by approximately 300 cm(-1) at pH 9.5 relative to pH 7.0. These data, combined with CD pH titrations which reveal a pK(a) of approximately 8.2 for resting WT Dke1 and the Glu98 --> Gln variant, indicate the deprotonation of a metal-ligated water. Together, the kinetic and spectroscopic data reveal a stabilizing effect of Glu98 on the 6C geometry of the metal center, priming it for substrate ligation. Arg80 and Tyr70 are shown to promote O(2) reduction, while Thr107 stabilizes the Fe(II) cofactor.


Subject(s)
Acinetobacter/enzymology , Dioxygenases/chemistry , Ferrous Compounds/chemistry , Histidine/chemistry , Acinetobacter/genetics , Catalysis , Circular Dichroism/methods , Cysteine Dioxygenase/chemistry , Dioxygenases/genetics , Dioxygenases/metabolism , Enzyme Stability/genetics , Ferrous Compounds/metabolism , Glutamic Acid/genetics , Glutamine/genetics , Hemeproteins/chemistry , Histidine/metabolism , Kinetics , Ligands , Mutagenesis, Site-Directed , Protein Binding/genetics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...