Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 159(6): 679-691, 2020 05.
Article in English | MEDLINE | ID: mdl-32191913

ABSTRACT

In the last years, many studies focused on the understanding of the possible role of zinc in the control of mammalian oogenesis, mainly on oocyte maturation and fertilization. However, little is known about the role of zinc at earlier stages, when the growing oocyte is actively transcribing molecules that will regulate and sustain subsequent stages of oocyte and embryonic development. In this study, we used the bovine model to gain insights into the possible involvement of zinc in oocyte development. We first mined the EmbryoGENE transcriptomic dataset, which revealed that several zinc transporters and methallothionein are impacted by physiological conditions throughout the final phase of oocyte growth and differentiation. We then observed that zinc supplementation during in vitro culture of growing oocytes is beneficial to the acquisition of meiotic competence when subsequently subjected to standard in vitro maturation. Furthermore, we tested the hypothesis that zinc supplementation might support transcription in growing oocytes. This hypothesis was indirectly confirmed by the experimental evidence that the content of labile zinc in the oocyte decreases when a major drop in transcription occurs in vivo. Accordingly, we observed that zinc sequestration with a zinc chelator rapidly reduced global transcription in growing oocytes, which was reversed by zinc supplementation in the culture medium. Finally, zinc supplementation impacted the chromatin state by reducing the level of global DNA methylation, which is consistent with the increased transcription. In conclusion, our study suggests that altering zinc availability by culture-medium supplementation supports global transcription, ultimately enhancing meiotic competence.


Subject(s)
Meiosis/physiology , Oocytes/growth & development , Oogenesis/physiology , Transcriptome , Zinc/pharmacology , Animals , Carrier Proteins/metabolism , Cattle , DNA Methylation/drug effects , Female , In Vitro Oocyte Maturation Techniques , Meiosis/drug effects , Metallothionein/metabolism , Oocytes/chemistry , Oocytes/drug effects , Oogenesis/drug effects , Zinc/analysis
2.
Anim Reprod ; 15(Suppl 1): 727-736, 2018.
Article in English | MEDLINE | ID: mdl-36249849

ABSTRACT

The efficiency of in vitro assisted reproductive technologies, consisting of the transfer of embryos obtained in vitro through in vitro maturation, in vitro fertilization and early embryo culture is still limited. The quality of the oocytes is pivotal for assisted reproductive efficiency and the maturation of the oocyte represents the first key limiting step of the in vitro embryo production system. At the time of removal from the antral follicles, the oocyte is still completing the final growth and differentiation steps, needed to provide the so-called developmental competence, i.e. the machinery required to sustain fertilization and embryo development. In mono-ovular species only one oocyte per cycle is available for procreation, therefore the current assisted reproduction techniques strive to overcome this natural boundary. However, the success is still limited and overall the effectiveness does not exceed the efficiency achieved in millions of years of mammalian evolution. One of the problems lies in the intrinsic heterogeneity of the oocytes that are subjected to in vitro maturation and in the lack of dedicated in vitro approaches to finalize the differentiation process. In this review we will try to overview some of the salient aspects of current practices by emphasizing the most critical and fundamental features in oocyte differentiation that should be carefully considered for improving current techniques.

3.
Mol Hum Reprod ; 22(12): 882-897, 2016 12.
Article in English | MEDLINE | ID: mdl-27559149

ABSTRACT

STUDY QUESTION: Does the gene expression profile of cumulus cells (CC) accompanying oocytes with different degrees of chromatin compaction within the germinal vesicle (GV) reflect the oocyte's quality and response in culture during in-vitro embryo production (IVP). SUMMARY ANSWER: The transcriptomic profile of the CC is related to oocyte competence, setting the stage for the development of customized pre-maturation strategies to improve IVP. WHAT IS KNOWN ALREADY: Oocytes complete the acquisition of their competence during antral follicle development. During this period, the chromatin configuration within the GV changes dynamically and is indicative of oocyte's developmental potential. The interactions between somatic and germ cells modulate chromatin morphology and function and are critical for acquisition of oocyte competence. STUDY DESIGN, SIZE, DURATION: Bovine cumulus-oocyte complexes (COC) were isolated from 0.5 to 6 mm antral follicles. Surrounding CC were separated from the oocyte and classified as GV0, GV1, GV2 and GV3 according to the degree of the oocyte's chromatin compaction. PARTICIPANTS/MATERIALS, SETTING, METHOD: RNA extracted from CC of each group was amplified and hybridized on a bovine embryo-specific 44 K Agilent slide. The CC_GV1, CC_GV2 and CC_GV3 classes were each hybridized against the CC_GV0 class, representing an early oocyte differentiation stage with poor development competence. The data were normalized and fold changes of the differentially expressed genes were determined. Microarray data were validated using quantitative RT-PCR on selected targets. Microarray data were further analyzed through: (i) between-group analysis (BGA), which classifies the samples according to their transcriptomic profiles; (ii) cluster analysis according to the expression profile of each gene; and (iii) Ingenuity Pathway Analysis (IPA) to study gene regulation patterns and predicted functions. Furthermore, CC of each GV group were cultured and apoptotic cells were assessed after 3 h by caspase analysis. Finally, based on the analysis of CC transcriptomic profiles and the relationship between morphological features of the COC and the oocyte chromatin configuration, a customized, stage-dependent oocyte pre-maturation (pre-IVM) system was used to improve oocyte developmental potential before IVM. For this, the blastocyst rate and quality were assessed after in-vitro maturation and fertilization of pre-matured oocytes. MAIN RESULTS AND THE ROLE OF CHANCE: Overall, quantitative RT-PCR results of a subset of five selected genes were consistent with the microarray data. Clustering analysis generated 16 clusters representing the main profiles of transcription modulation. Of the 5571 significantly differentially expressed probes, the majority (25.49%) best fitted with cluster #6 (downregulation between CC_GV0 and CC_GV1 and stable low levels in successive groups). IPA identified the most relevant functions associated with each cluster. Genes included in cluster #1 were mostly related to biological processes such as 'cell cycle' and 'cell death and survival', whereas genes included in cluster #5 were mostly related to 'gene expression'. Interestingly, 'lipid metabolism' was the most significant function identified in clusters #6, #9 and #12. IPA of gene lists obtained from each contrast (i.e., CC_GV0 vs. CC_GV1; CC_GV0 vs. CC_GV2; CC_GV0 vs. CC_GV3) revealed that the main affected function in each contrast was 'cell death and survival'. Importantly, apoptosis was predicted to be inhibited in CC_GV1 and CC_GV2, but activated in CC_GV3. Caspase analysis indicated that a low percentage of CC_GV0 was prone to undergo apoptosis but apoptosis increased significantly in CC from oocytes with condensed chromatin, reaching a peak in CC_GV3 (P < 0.05). Finally, the tailored oocyte pre-maturation strategy, based on morphological features of the COC and the oocyte chromatin configuration, demonstrated that pre-IVM improved the developmental capability of oocytes at early stages of differentiation (GV1-enriched COC) but was detrimental for oocytes at more advanced stages of development (GV2 and GV3-enriched COC). LARGE SCALE DATA: The data are available through the GEO series accession number GSE79886. LIMITATIONS, REASONS FOR CAUTION: This study was conducted with bovine samples. Whether or not the results are applicable to human oocytes requests further elucidation. Embryo transfer experiments are required to determine whether the improvement in blastocyst rates in the tailored system leads to increased live birth rates. WIDER IMPLICATIONS OF THE FINDINGS: The identification of multiple non-invasive biomarkers predictive of oocyte quality can greatly strengthen the pre-IVM approach aimed to improve IVM outcomes. These results have potentially important implications in treating human infertility and in developing breeding schemes for domestic mammals. STUDY FUNDING/COMPETING INTERESTS: This work was supported in part by NSERC Strategic Network EmbryoGENE, Canada and in part by CIG-Marie Curie Actions-Reintegration Grants within the EU 7FP (n. 303640, 'Pro-Ovum'). The authors declare no potential conflict of interest.


Subject(s)
Cumulus Cells/metabolism , Oocytes/metabolism , Ovarian Follicle/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Cattle , Chromatin/metabolism , Cumulus Cells/physiology , Female , In Vitro Oocyte Maturation Techniques , Meiosis/genetics , Meiosis/physiology , Oocytes/physiology , Oogenesis/genetics , Oogenesis/physiology , Ovarian Follicle/physiology
4.
Anim Reprod Sci ; 149(1-2): 3-10, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25028181

ABSTRACT

The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.


Subject(s)
Chromatin/physiology , Oogenesis/physiology , Ovarian Follicle/cytology , Animals , Chromatin Assembly and Disassembly/physiology , Female , Humans
5.
Biol Reprod ; 89(3): 68, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23926281

ABSTRACT

In the pig, the efficiency of in vitro embryo production and somatic cell nuclear transfer (SCNT) procedures remains limited. It has been suggested that prematuration treatments (pre-IVM) based on the prolongation of a patent, bidirectional crosstalk between the oocyte and the cumulus cells through gap junction mediate communication (GJC), with the maintenance of a proper level of cAMP, could improve the developmental capability of oocytes. The aim of this study was to assess: 1) dose-dependent effects of cilostamide on nuclear maturation kinetics, 2) the relationship between treatments on GJC functionality and large-scale chromatin configuration changes, and 3) the impact of treatments on developmental competence acquisition after parthenogenetic activation (PA) and SCNT. Accordingly, cumulus-oocyte complexes were collected from 3- to 6-mm antral follicles and cultured for 24 h in defined culture medium with or without 1 µM cilostamide. GJC functionality was assessed by Lucifer yellow microinjection, while chromatin configuration was evaluated by fluorescence microscopy after nuclear staining. Cilostamide administration sustained functional coupling for up to 24 h of culture and delayed meiotic resumption, as only 25.6% of cilostamide-treated oocytes reached the pro-metaphase I stage compared to the control (69.7%; P < 0.05). Moreover, progressive chromatin condensation was delayed before meiotic resumption based upon G2/M biomarker phosphoprotein epitope acquisition using immunolocalization. Importantly, cilostamide treatment under these conditions improved oocyte developmental competence, as reflected in higher blastocyst quality after both parthenogenetic activation and SCNT.


Subject(s)
Cell Communication/drug effects , Chromatin Assembly and Disassembly/drug effects , Gap Junctions/drug effects , Nuclear Transfer Techniques/veterinary , Oocytes/drug effects , Parthenogenesis/drug effects , Quinolones/pharmacology , Swine/physiology , Animals , Cells, Cultured , Cumulus Cells/drug effects , Cumulus Cells/physiology , Dose-Response Relationship, Drug , Female , Meiosis/drug effects , Oocytes/physiology , Oogenesis/drug effects , Parthenogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...