Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 1648, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30733570

ABSTRACT

sp-Hybridized carbon atomic wires are appealing systems with large property tunability. In particular, their electronic properties are intimately related to length, structure, and type of functional end-groups as well as to other effects such as the intermolecular charge transfer with metal nanoparticles. Here, by a combined Raman, Surface Enhanced Raman Scattering (SERS) investigation and first principles calculations of different N,N-dimethylanilino-terminated polyynes, we suggest that, upon charge transfer interaction with silver nanoparticles, the function of sp-carbon atomic wire can change from electron donor to electron acceptor by increasing the wire length. In addition, the insertion into the wire of a strong electrophilic group (1,1,4,4-tetracyanobuta-1,3-diene-2,3-diyl) changes the electron-accepting molecular regions involved in this intermolecular charge transfer. Our results indicate that carbon atomic wires could display a tunable charge transfer between the sp-wire and the metal, and hold promise as active materials in organic optoelectronics and photovoltaics.

2.
J Magn Reson ; 223: 187-97, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22975248

ABSTRACT

Two-pulse electron spin echo envelope modulation (ESEEM) line widths are influenced by transverse electron spin relaxation, which is in turn induced by local field fluctuations. Simultaneous analysis of the decays of the unmodulated and modulated parts of the ESEEM signal provides deeper insight into the relaxation of a spin system consisting of an electron spin 1/2 coupled to N(I) nuclei with spin 1/2. Standard two-pulse ESEEM formulas either do not account for relaxation or assume uniform relaxation for all lines. In general, the relaxation rates on allowed and forbidden transitions may not be the same. Experimental results obtained on a single crystal of Cu(II)-doped L-histidine suggest that such a difference exists. Theoretical considerations show that in such a case the product rule for two-pulse ESEEM does not extend to expressions including relaxation. Product rules in general do not properly account for relaxation in three-pulse ESEEM and HYSCORE experiments. Decay of the apparently non-oscillatory part of the two-pulse echo may be strongly affected by modulation interference. Such interference of difference frequencies of matrix nuclei may cause a rather flat initial feature, which was previously attributed solely to non-exponential phase relaxation of electron spin transitions due to spin diffusion of the matrix nuclei. In addition, the sometimes observed drastic initial decay of the time domain signal is related to modulation interference of multiple-quantum coherences that arise from a strong cross-suppression effect.

3.
J Phys Chem A ; 110(22): 7237-46, 2006 Jun 08.
Article in English | MEDLINE | ID: mdl-16737275

ABSTRACT

The barriers to internal rotation of methylated, ethynylated, and vinylated butatrienes and alkenes were calculated at the CASPT2/6-31G(d)//B3LYP/6-31G(d) level. Calculated butatriene rotational barriers are lower than those of analogous alkenes, but there is a larger variance in rotational barrier for alkenes than for butatrienes. The barriers to rotation were analyzed by isodesmic equations designed to estimate the substituent effects in the ground (GS) and transition (TS) states individually. The GSs of both series are stabilized to roughly the same extent. In contrast, the TSs of butatrienes are more stabilized overall than those of alkenes. Much of the stabilization in the TS of butatrienes comes from the internal triple bond and not from the substituent. Estimation of the substituent stabilization alone reveals the TSs of ethylenes to be more stabilized by substitution than butatrienes.

4.
Chemistry ; 7(15): 3263-80, 2001 Aug 03.
Article in English | MEDLINE | ID: mdl-11531112

ABSTRACT

A selection of dimeric tetraethynylethenes (TEEs) and perethynylated expanded radialenes, containing different donor/acceptor substitution patterns, have been prepared and fully characterized. The first X-ray crystal structure of an expanded [6]radialene, with twelve peripheral 3,5-di(tert-butyl)phenyl substituents, is presented. This macrocycle, the all-carbon core of which is isomeric with fullerene C60, adopts a non-planar, "chair-like" conformation. Also a TEE dimer, carrying N,N-dimethylaniline donor substituents, has been subjected to an X-ray crystallographic analysis. The electronic properties were studied by UV/Vis spectroscopy and electrochemistry, providing fundamental insight into mechanisms of pi-electron delocalization in the acyclic and macrocyclic chromophores. Donor or donor-acceptor-substituted dimeric TEE derivatives show very strong absorptions extending over the entire UV/Vis region; their longest wavelength absorption bands have high charge-transfer character. Macrocyclic cross-conjugation in the expanded radialenes becomes increasingly efficient with increasing donor-acceptor polarization. A dual, strongly solvent-polarity-dependent fluorescence was observed for a tetrakis(N,N-dimethylaniline)-substituted dimeric TEE; this interesting emission behavior is explained by the twisted intramolecular charge-transfer (TICT) state model. Donor-substituted expanded radialenes display huge resonance-enhanced third-order nonlinear optical coefficients.

5.
Chemistry ; 7(6): 1333-41, 2001 Mar 16.
Article in English | MEDLINE | ID: mdl-11322561

ABSTRACT

The series of monodisperse Pt-bridged TEE oligomers 3a-f was prepared by oxidative Glaser-Hay oligomerization of monomer 7 under end-capping conditions. These novel molecular rods extend in length from 3.3 nm (monomeric 3a) to 12.1 nm (hexameric 3 f). Their isolation was achieved by high performance gel permeation chromatography (GPC), and their purification was best monitored by analytical GPC in combination with matrix-assisted laser-desorption-ionization mass spectrometry (MALDI-TOF MS). The mass spectra of each oligomer revealed the molecular ion or its sodium complex as parent ion together with a clean, highly characteristic fragmentation pattern. Delayed addition of the end-capping reagent PhC(triple bond)CH to the oligomerization mixture afforded polymer 10 with an average of approximately 32 repeat units and a remarkably narrow molecular weight distribution (Mw/Mn=1.06), which is indicative of a living polymerization process. UV/Vis spectral data as well as measurements of the second hyperpolarizability gamma by third harmonic generation (THG) revealed a nearly complete lack of pi-electron delocalization along the oligomeric backbone. The Pt atoms act as true insulating centers, and the Pt-C(sp) bonds hardly possess any pi character. The synthesis of the molecular rods 3a-f provides another demonstration of the power of oxidative acetylenic homocouplings for the preparation of unusual nanoarchitecture.

6.
Chem Commun (Camb) ; (18): 1848-9, 2001 Sep 21.
Article in English | MEDLINE | ID: mdl-12240345

ABSTRACT

Novel extended tetrathiafulvalenes (TTFs) with hexa-2,4-diyne-1,6-diylidene spacers between the two 1,3-dithiole rings and laterally appended alkynyl moieties for one- and two-dimensional scaffolding were synthesised and investigated for their electronic properties.

7.
Chemphyschem ; 2(7): 423-33, 2001 Jul 16.
Article in English | MEDLINE | ID: mdl-23696526

ABSTRACT

The photophysical properties of N,N-dimethylaniline- (DMA) substituted tetraethynylethene (TEE; 3,4-diethynylhex-3-ene-1,5-diyne) and related derivatives were investigated in a joint experimental and computational study. Measurements of the electronic emission spectra showed that these novel chromophores display a dual fluorescence which strongly depends on solvent polarity. Computational studies suggest that the twisted intramolecular charge-transfer state (TICT) model offers a possible explanation for the experimentally observed dual fluorescence. Time-dependent density functional calculations revealed that the initial excited state reached upon photoirradiation relaxes to a lower-energy TICT state in which either the dimethylamino group is twisted into an orthogonal position with respect to the remaining planar arylated TEE moiety or the entire DMA donor group takes an orthogonal orientation with respect to the rigid, planar TEE acceptor moiety. For the compounds investigated, the charge-transfer state responsible for the strongly solvent-dependent luminescence is directly connected with the initial excited state, namely, no crossing of states is involved.


Subject(s)
Aniline Compounds/chemistry , Enediynes/chemistry , Quantum Theory
8.
Chemistry ; 6(19): 3622-35, 2000 Oct 02.
Article in English | MEDLINE | ID: mdl-11072828

ABSTRACT

A series of monodisperse Et3-Si-end-capped poly(triacetylene) (PTA) oligomers ranging from monomer to hexadecamer was prepared by a fast and efficient statistical deprotection-oxidative Hay oligomerization protocol. The PTA oligomers exhibit an increasingly deep-yellow color with lengthening of the pi-conjugated backbone, feature excellent solubility in aprotic solvents, and exhibit melting points up to > 22 degrees C for the hexadecameric rod. This new dramatically extended oligo(enediyne) series now enables to investigate the evolution of the physico-chemical effects in PTAs beyond the linear 1/n versus property regime into the higher oligomer region where saturation becomes apparent. We report the results of joint experimental and theoretical studies, including analysis of the 13C NMR spectra, evaluation of the linear (UV/ Vis) and nonlinear [third-harmonic generation (THG) and degenerate four-wave mixing (DFWM)] optical properties, and characterization of the redox properties with cyclic and steady-state voltammetry. Up to the hexadecameric rod, an increasingly facile one-electron reduction step is observed, showing at the stage of the dodecamer, a leveling off tendency from the linear correlation between the inverse number of monomer units and the first reduction potential. The effective conjugation length (ECL) determined by means of UV/Vis spectroscopy revealed a pi-electron-delocalization length of about n = 10 monomeric units, which corroborates well with the oligomeric length for which in the 13C NMR spectrum C(sp2) and C(sp) resonances start to overlap. Third-harmonic generation (THG) and degenerate four-wave mixing (DFWM) measurements revealed for the second-order hyperpolarizability gamma a power law increase gammma-alpha-n(a) for oligomers up to the octamer with exponential factors a= 2.46+/-0.10 and a=2.64+/-0.20, respectively, followed by a smooth saturation around n = 10 repeating units. The power law coefficient a calculated with the help of the valence effective Hamiltonian (VEH) method combined to a sum-over-states (SOS) formalism corroborates well with the values found by both THG and DFWM experiments. Up to the PTA heptamer, INDO (intermediate neglect of differential overlap)-calculated gas-phase ionization potentials and electron affinities obey a linear relationship as a function of the inverse number of monomer units displaying a strong electron-hole symmetry. The onset of saturation for the electron affinity is calculated to occur around the octamer, in accordance with experimentally obtained results from electrochemical measurements.

9.
J Org Chem ; 65(18): 5522-7, 2000 Sep 08.
Article in English | MEDLINE | ID: mdl-10970290

ABSTRACT

The twisting ability of a series of 1,1'-binaphthalene compounds used as dopants in nematic solvents has been related to the dihedral angle theta between the two naphthalene moieties. While in the case of the more flexible compounds the sign and value of the helical twisting power is affected by several structural features that prevent a simple assignment of the conformation, in the presence of a covalent bridge that restricts the rotation around the C(1)-C(1') bond a reliable estimate of the conformational helicity could be obtained. This technique is complementary to CD spectroscopy that, for the investigated molecules, presents the same exciton patterns irrespective of the actual theta value.

10.
Angew Chem Int Ed Engl ; 39(15): 2632-2657, 2000 Aug 04.
Article in English | MEDLINE | ID: mdl-10934391

ABSTRACT

Acetylenic coupling is currently experiencing some of the most intensive study of its long history. Rigid and sterically undemanding di- and oligoacetylene moieties, which are frequently encountered in natural products, are finding increasing application as key structural elements in synthetic receptors for molecular recognition. Interesting electronic and optical properties of extensively pi-conjugated systems have spurred research into new linear oligoalkynes and acetylenic carbon allotropes. The synthetic challenges associated with these efforts have in turn spawned new methods. While classical Glaser conditions are still frequently used for homocoupling, the demand for increasingly selective heterocoupling conditions has provided the focus of research over the past decades. These efforts have undoubtedly been hampered by a relatively poor mechanistic understanding of these processes. More recently, palladium-catalyzed coupling methods have led to improvements in both the selectivity and reliability of acetylenic homo- and heterocouplings and paved the way for their application to ever more complicated systems. The variety of acetylenic coupling protocols, the current mechanistic understanding, and their application in natural product and targeted synthesis are discussed comprehensively for the first time in this review, with an emphasis on the most recently developed methods, and their application to the synthesis of complex macromolecular structures.

11.
Chemistry ; 6(12): 2184-92, 2000 Jun 16.
Article in English | MEDLINE | ID: mdl-10926224

ABSTRACT

The novel mixed bis-adducts of C60, (+/-)-4-(+/-)-8 and 9, with a bis(ethoxycarbonyl)methano addend (Bingel addend) and a second addend ([1,2]benzeno, but[2]eno, methaniminomethano, or diarylmethano) bridging 6,6-closed bonds of the carbon sphere were synthesized in two-step reactions. Each bis-adduct was exhaustively electrolyzed at the potential of the second fullerene-centered reduction step, resulting in the selective removal of the Bingel addend (retro-Bingel reaction) to produce the corresponding mono-adducts, which were isolated in yields of over 60%. These results open up the possibility of using the Bingel addend as a temporary protecting and directing group in the construction of multiple adducts of C60 with unusual addition patterns. The Bingel-type mono-adduct of C70 10 and the constitutionally isomeric bis-adducts 11, (+/-)-12, and (+/-)-13 were also included in this investigation. A large difference in the electrochemical behavior between C70 bis-adducts and the corresponding C60 derivatives was observed. Thus, the intramolecular "walk-on-the-sphere" isomerization which occurs readily with Bingel-type bis-adducts of C60 under the conditions of two-electron controlled potential electrolysis (CPE) is only a minor reaction pathway in the series of C70 derivatives. The latter preferentially undergo retro-Bingel reaction.

12.
Chemistry ; 6(9): 1629-45, 2000 May 02.
Article in English | MEDLINE | ID: mdl-10839180

ABSTRACT

The cyclophane-type molecular dyads 1 x 2H and 1 x Zn, in which a doubly bridged porphyrin donor adopts a close, tangential orientation relative to the surface of a fullerene acceptor, were prepared by Bingel macrocylization. The porphyrin derivatives 2 x 2H and 2 x Zn with two appended, singly linked C60 moieties were also formed as side products. NMR investigations revealed that the latter compounds strongly prefer conformations with one of the carbon spheres nesting on the porphyrin surface, thereby taking a similar orientation to that of the fullerene moiety in the doubly bridged systems. Cyclic voltammetric measurements showed that the mutual electronic effects exerted by the fullerene on the porphyrin and vice versa are only small in all four dyads, despite the close proximity of the donor and acceptor components. The steady-state and time-resolved absorption and luminescence properties of 1 x Zn and 2 x Zn were investigated in toluene solution and it was shown that, upon light excitation, both the porphyrin- and the fullerene-centered excited states are deactivated to a lower-lying CT state, emitting in the IR spectral region (lambda max = 890 and 800 nm at 298 and 77 K, respectively). In the more polar solvent benzonitrile, this CT state is still detected but, owing to its very low energy (below 1.4 eV), is not luminescent and shorter-lived than in toluene. The remarkable observation of similar photophysical behavior of 1 x Zn and 2 x Zn suggests that a tight donor-acceptor distance cannot only be established in doubly bridged cyclophane-type structures but also in singly bridged dyads, by taking advantage of favourable fullerene-porphyrin ground-state interactions.

13.
Chemistry ; 6(6): 971-82, 2000 Mar 17.
Article in English | MEDLINE | ID: mdl-10785817

ABSTRACT

The enzyme catechol O-methyltransferase (COMT) catalyzes the Me group transfer from the cofactor S-adenosylmethionine (SAM) to the hydroxy group of catechol substrates. Potential bisubstrate inhibitors of COMT were developed by structure-based design and synthesized. The compounds were tested for in vitro inhibitory activity against COMT obtained from rat liver, and the inhibition kinetics were examined with regard to the binding sites of cofactor and substrate. One of the designed molecules was found to be a bisubstrate inhibitor of COMT with an IC50 = 2 microM. It exhibits competitive kinetics for the SAM and noncompetitive kinetics for the catechol binding site. Useful structure-activity relationships were established which provide important guidelines for the design of future generations of bisubstrate inhibitors of COMT.


Subject(s)
Catechol O-Methyltransferase Inhibitors , Enzyme Inhibitors/chemical synthesis , Animals , Binding Sites , Catechols/metabolism , Catechols/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Kinetics , Liver/enzymology , Models, Molecular , Parkinson Disease/drug therapy , Rats , S-Adenosylmethionine/analogs & derivatives , S-Adenosylmethionine/metabolism
14.
Chemistry ; 6(23): 4400-12, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11140971

ABSTRACT

Two series of monodisperse, terminally donor-donor [D-D, D=4-(dimethylamino)phenyl] and acceptor-acceptor [A-A, A=4-nitrophenyl] functionalized poly(triacetylene) (PTA) oligomers ranging from monomer to hexamer were synthesized by oxidative Hay oligomerization under end-capping conditions. The corresponding D-D and A-A end-substituted polymers with an average degree of polymerization (DP) of n approximately 18 and n approximately 12, respectively, were also prepared and served as reference points for the corresponding infinitely long polymers. These terminally functionalized PTA oligomers and polymers are yellow- to orange-colored compounds, displaying excellent solubility in aprotic solvents with melting points above 200 degrees C for the hexamers. For the 4-(dimethylamino)phenyl substituted compounds, a consistent first oxidation potential around +0.42 V versus Fc/Fc+ (ferrocene/ferricinium) was observed, whereas the 4-nitrophenyl functionalized systems underwent a reversible reductive two-electron transfer around -1.40V versus Fc/Fc+. The nature of the end-groups has a dramatic influence on the electronic absorption spectra. Saturation of the linear optical properties in the D-D series occurs at significantly shorter chain-length [effective conjugation length (ECL) of n approximately 4 monomer units] than in the A-A substituted or the previously reported Me3Si- and Et3Si-end-capped PTA oligomer series (ECL: n approximately 10 monomer units). Similar observations with respect to the ECL were made by measurement of the Raman-active v(C triple bound C) stretches. Third-harmonic generation (THG) and degenerate four-wave mixing (DFWM) experiments showed that shorter oligomers of terminally D-D or A-A functionalized PTAs display higher second hyperpolarizabilities gamma than the corresponding R3Si-end-capped series (R=alkyl). Moreover, they disclose a distinct peak of the nonlinearity per monomer unit at intermediate backbone lengths. In THG experiments, the second hyperpolarizabilities for long D/A-functionalized PTA oligomers attained the same saturation values as observed for the corresponding R3Si-end-capped rods. The nonlinearities measured by DFWM of the D-D and A-A substituted PTAs were found to be larger than for the silylated ones, which can be explained by the closeness of the two-photon resonance.

15.
Angew Chem Int Ed Engl ; 38(21): 3215-3219, 1999 Nov 02.
Article in English | MEDLINE | ID: mdl-10556907

ABSTRACT

The quantitative evaluation of the effect of an insulating dendritic shell on the redox properties of an embedded iron porphyrin core has been achieved for the first time using water-soluble dendritic iron porphyrins with tethered axial ligands (shown schematically). Thus, these complexes, whose redox properties have been determined by chemical and electrochemical methods in solvents of different polarity (CH(2)Cl(2), MeCN, H(2)O), are valid mimics for cytochromes.

16.
J Lipid Res ; 40(8): 1475-82, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10428984

ABSTRACT

Previous studies from this laboratory have demonstrated that low concentrations of cyclodextrins (<1.0 mm), when added to serum, act catalytically as cholesterol shuttles to accelerate the exchange of free cholesterol between cells and serum lipoproteins. As cholesterol shuttles, cyclodextrins have the potential to serve as pharmacological agents for modifying cholesterol metabolism. In the present study, we have quantitated the cholesterol-shuttling capacity of a series of newly synthesized beta-cyclodextrin derivatives (betaCDs), with varying structure, and two double-decker cyclophanes. The general protocol is as follows. [(3)H]cholesterol-labeled CHOK1 cells are incubated for 2 h with the test compounds alone or together with 5% human serum, and efflux of the cellular [(3)H]cholesterol is measured. As methyl beta-cyclodextrin (MbetaCD) served as the basis for comparison, initial experiments were conducted that demonstrated there was a dose-dependent stimulation of cell cholesterol efflux as the concentration of MbetaCD increased, with an EC(50) that was calculated to be 0.05 mm. To determine the cholesterol-shuttling capacity of the newly synthesized compounds, cell cholesterol efflux is measured when the compounds are present alone, at a concentration of 0.05 mm, or together with 5% human serum. Our results demonstrate that the double-decker cyclophanes are the most efficient cholesterol shuttles. Under our experimental conditions, methyl beta-cyclodextrin (MbetaCD) approximately doubles the efflux of cell cholesterol to serum, whereas one of the double-decker cyclophanes produces a 4-fold stimulation in efflux. Four of the beta-cyclodextrin derivatives (betaCDs) display shuttling ability similar to that of MbetaCD. Furthermore, there does not appear to be a structural pattern among the other betaCDs which could explain their shuttling capacity.


Subject(s)
Cholesterol/metabolism , Cyclodextrins/metabolism , Ethers, Cyclic/metabolism , Lipoproteins/blood , Piperidines/metabolism , beta-Cyclodextrins , Animals , Biological Transport , CHO Cells , Cricetinae , Dose-Response Relationship, Drug , Drug Carriers/metabolism , Humans , Solubility
17.
Opt Lett ; 24(22): 1599-601, 1999 Nov 15.
Article in English | MEDLINE | ID: mdl-18079876

ABSTRACT

Poly(triacetylenes) are rodlike molecules with electrons delocalized over a one-dimensional path. We show that they exhibit a power-law dependence of the second-order hyperpolarizability gamma on the monomer unit n for short molecules and a smooth saturation toward a linear increase in longer molecules. The power law of gamma?n(a) with a approximately 2.5 from dengenerate four-wave mixing and third-harmonic generation measurements is in good agreement with quantum-chemical calculations. The critical conjugation length for saturation in the three cases is shown to be approximately 60 carbon-carbon bonds, which indicates the upper boundary for the electron delocalization in such a one-dimensional molecular wire.

18.
Chem Biol ; 4(4): 287-95, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9195869

ABSTRACT

BACKGROUND: The serine protease thrombin is central in the processes of hemostasis and thrombosis. To be useful, thrombin inhibitors should combine potency towards thrombin with selectivity towards other related enzymes such as trypsin. We previously reported the structure-based design of thrombin inhibitors with rigid, bicyclic core structures. These compounds were highly active towards thrombin, but showed only modest selectivity. RESULTS: Here, we describe the rational design of selective thrombin inhibitors starting from the X-ray crystal structure of the complex between the previously generated lead molecule and thrombin. The lead molecule bound with a Ki value of 90nM and a selectivity of 7.8 for thrombin over trypsin. Our design led to inhibitors with improved activity and greatly enhanced selectivity. The binding mode for two of the new inhibitors was determined by X-ray crystallography of their complexes with thrombin. The results confirmed the structures predicted by molecular modeling and, together with the binding assays, provided profound insight into molecular recognition phenomena at the thrombin active site. CONCLUSIONS: A novel class of nonpeptidic, selective thrombin inhibitors has resulted from structure-based design and subsequent improvement of the initial lead molecule. These compounds, which are preorganized for binding to thrombin through a rigid, bicyclic or tricyclic central core, could aid in the development of new antithrombotic drugs. Correlative binding and X-ray structural studies within a series of related, highly preorganized inhibitors, which all prefer similar modes of association to thrombin, generate detailed information on the strength of individual intermolecular bonding interactions and their contribution to the overall free energy of complexation.


Subject(s)
Antithrombins/chemical synthesis , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Antithrombins/chemistry , Antithrombins/metabolism , Antithrombins/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Design , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Protein Binding , Stereoisomerism
20.
Chem Biol ; 2(3): 139-46, 1995 Mar.
Article in English | MEDLINE | ID: mdl-9383415

ABSTRACT

BACKGROUND: Recent X-ray crystal structures show that steroid-binding proteins contain deep hydrophobic cavities defined by aromatic amino-acid side chains which encapsulate steroid molecules. These cavities resemble the binding site of a synthetic macrotricyclic cyclophane receptor which we recently reported to form complexes with cholesterol in aqueous solution. The binding affinity of the cyclophane-cholesterol complex (Ka approximately 10(6) M-1, 295 K) is similar to that measured for the cholesterol complex of steroid-transport proteins such as sterol carrier protein-2 (SCP-2). Here we describe synthesis and binding studies of a related receptor with a cavity that is wider and 2 A deeper than that of the previous cyclophane, and a comparison of the steroid-binding affinity and selectivity of the two synthetic receptors. RESULTS: A new tricyclic cyclophane receptor with a 13 A deep cavity was synthesized to study the effect of increased cavity depth on receptor selectivity for steroids. NMR analysis demonstrated that this receptor provided increased steroidal side-chain encapsulation with a corresponding gain in binding free energy of 0.9 kcal mol-1 (in d4-methanol) as compared to our previously reported 11 A deep receptor. An unexpected consequence of the increase in cavity depth was a corresponding enlargement of the cavity width, as indicated both by steroid-binding studies and molecular modeling. This enlargement in cavity width increases binding affinity for saturated steroids while decreasing the association strength of unsaturated steroids such as cholesterol. In water, cholesterol binds to the new receptor with Ka approximately 1.5 x 10(5) M-1 and exhibits a significant complexation-mediated solubility increase. CONCLUSIONS: Small changes in steroid receptor dimensions have resulted in large differences in steroid selectivity and binding affinity. These results indicate that potentially large gains in steroid-binding free energy may be obtainable from complete hydrophobic encapsulation of the flexible aliphatic steroidal side chain. These results have implications for the design of synthetic receptor mimics of natural steroid binding proteins.


Subject(s)
Cholesterol/chemistry , Cyclohexanes/chemistry , Progesterone/chemistry , Receptors, Steroid/chemistry , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Methanol , Models, Molecular , Protein Binding , Receptors, Steroid/ultrastructure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...