Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 153: 106499, 2024 May.
Article in English | MEDLINE | ID: mdl-38490049

ABSTRACT

3D printable biopolymer nanocomposites composed of hydroxyapatite nanoparticles and functionalized plant-based monomers demonstrate potential as sustainable and structural biomaterials. To increase this potential, their printability and performance must be improved. For extrusion-based 3D printing, such as Direct Ink Writing (DIW), printability is important for print fidelity. In this work, triglycerol diacrylate (TGDA) was added to an acrylated epoxidized soybean oil:polyethylene glycol diacrylate resin to increase hydrogen bonding. Greater hydrogen bonding was hypothesized to improve printability by increasing the ink's shear yield strength, and therefore shape holding after deposition. The effects of this additive on material and mechanical properties were quantified. Increased hydrogen bonding due to TGDA content increased the ink's shear yield stress and viscosity by 916% and 27.6%, respectively. This resulted in improved printability, with best performance at 3 vol% TGDA. This composition achieved an ultimate tensile strength (UTS) of 32.4 ± 2.1 MPa and elastic modulus of 1.15 ± 0.21 GPa. These were increased from the 0 vol% TGDA composite, which had an UTS of 24.8 ± 1.8 MPa and a modulus of 0.88 ± 0.06 GPa. This study demonstrates the development of bio-based additive manufacturing feedstocks for potential uses in sustainable manufacturing, rapid prototyping, and biomaterial applications.


Subject(s)
Biocompatible Materials , Gastropoda , Animals , Durapatite , Elastic Modulus , Hydrogen Bonding
2.
ACS Omega ; 4(23): 20297-20307, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31815232

ABSTRACT

This work features the first-time use of poly(trimethylene terephthalate) (PTT), a biobased engineering thermoplastic, for fused deposition modeling (FDM) applications. Additives such as chain extenders (CEs) and impact modifiers are traditionally used to improve the processability of polymers for injection molding; as a proof of concept for their use in FDM, the same strategies were applied to PTT to improve its printability. The filament processing conditions and printing parameters were optimized to generate complete, warpage-free samples. The blends were characterized through physical, thermal, viscoelastic, and morphological analyses. In the optimal blend (90 wt % PTT, 10 wt % impact modifier, and 0.5 phr CE), the filament diameter was improved by ∼150%, the size of the spherulites significantly decreased to 5% of the ∼26 µm spherulite size found in neat PTT, and the melt flow index decreased to ∼4.7 g/10 min. From this blend, FDM samples with a high impact performance of ∼61 J/m were obtained, which are comparable to other conventional FDM thermoplastics. The ability to print complete and warpage-free samples from this blend suggests a new filament feedstock material for industrial and home-use FDM applications. This paper discusses methods to improve hard-to-print polymers and presents the improved printability of PTT as proof of these methods' effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...