Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4513, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802361

ABSTRACT

Urothelial bladder cancer (UC) has a wide tumor biological spectrum with challenging prognostic stratification and relevant therapy-associated morbidity. Most molecular classifications relate only indirectly to the therapeutically relevant protein level. We improve the pre-analytics of clinical samples for proteome analyses and characterize a cohort of 434 samples with 242 tumors and 192 paired normal mucosae covering the full range of UC. We evaluate sample-wise tumor specificity and rank biomarkers by target relevance. We identify robust proteomic subtypes with prognostic information independent from histopathological groups. In silico drug prediction suggests efficacy of several compounds hitherto not in clinical use. Both in silico and in vitro data indicate predictive value of the proteomic clusters for these drugs. We underline that proteomics is relevant for personalized oncology and provide abundance and tumor specificity data for a large part of the UC proteome ( www.cancerproteins.org ).


Subject(s)
Biomarkers, Tumor , Proteomics , Urinary Bladder Neoplasms , Humans , Proteomics/methods , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Biomarkers, Tumor/metabolism , Proteome/metabolism , Female , Male , Urothelium/pathology , Urothelium/metabolism , Aged , Prognosis , Middle Aged , Aged, 80 and over
2.
Front Immunol ; 10: 1716, 2019.
Article in English | MEDLINE | ID: mdl-31396228

ABSTRACT

Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1ß, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFß, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments.


Subject(s)
Atrial Appendage/cytology , Leukocytes, Mononuclear/immunology , Mesenchymal Stem Cells/immunology , Allogeneic Cells/immunology , Coculture Techniques , Humans , Immunomodulation
3.
J Tissue Eng Regen Med ; 12(3): e1404-e1417, 2018 03.
Article in English | MEDLINE | ID: mdl-28752609

ABSTRACT

Cardiac-derived adherent proliferating (CardAP) cells obtained from endomyocardial biopsies (EMBs) with known anti-fibrotic and pro-angiogenic properties are good candidates for the autologous therapy of end-stage cardiac diseases such as dilated cardiomyopathy. However, due to the limited number of CardAP cells that can be obtained from EMBs, our aim is to isolate cells with similar properties from other regions of the heart with comparable tissue architecture. Here, we introduce the atrial appendage as a candidate region. Atrial appendage-derived cells were sorted with CD90 microbeads to obtain a CD90low cell population, which were subsequently analysed for their surface marker and gene expression profiles via flow cytometry and micro array analysis. Enzyme-linked immunosorbent assays for vascular endothelial growth factor and interleukin-8 as well as tube formation assays were performed to investigate pro-angiogenic properties. Furthermore, growth kinetic assays were performed to estimate the cell numbers needed for cell-based products. Microarray analysis revealed the expression of numerous pro-angiogenic genes and strong similarities to CardAP cells with which they also share expression levels of defined surface antigens, that is, CD29+ , CD44+ , CD45- , CD73+ , CD90low , CD105+ , and CD166+ . High secretion levels of vascular endothelial growth factor and interleukin-8 as well as improved properties of vascular structures in vitro could be detected. Based on growth parameters, cell dosages for the treatment of more than 250 patients are possible using one appendage. These results lead to the conclusion that isolating cells with regenerative characteristics from atrial appendages is feasible and permits further investigations towards allogenic cell-based therapies.


Subject(s)
Atrial Appendage/cytology , Cell- and Tissue-Based Therapy , Myocardium/cytology , Regenerative Medicine , Biomarkers/metabolism , Cell Adhesion , Cell Proliferation , Cell Shape , Cluster Analysis , Data Mining , Fibroblasts/cytology , Humans , Interleukin-8/metabolism , Kinetics , Neovascularization, Physiologic/genetics , Thy-1 Antigens/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...