Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Sci Rep ; 14(1): 15972, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987302

ABSTRACT

Task-specific dystonia leads to loss of sensorimotor control for a particular motor skill. Although focal in nature, it is hugely disabling and can terminate professional careers in musicians. Biomarkers for underlying mechanism and severity are much needed. In this study, we designed a keyboard device that measured the forces generated at all fingertips during individual finger presses. By reliably quantifying overflow to other fingers in the instructed (enslaving) and contralateral hand (mirroring) we explored whether this task could differentiate between musicians with and without dystonia. 20 right-handed professional musicians (11 with dystonia) generated isometric flexion forces with the instructed finger to match 25%, 50% or 75% of maximal voluntary contraction for that finger. Enslaving was estimated as a linear slope of the forces applied across all instructed/uninstructed finger combinations. Musicians with dystonia had a small but robust loss of finger dexterity. There was increased enslaving and mirroring, primarily during use of the symptomatic hand (enslaving p = 0.003; mirroring p = 0.016), and to a lesser extent with the asymptomatic hand (enslaving p = 0.052; mirroring p = 0.062). Increased enslaving and mirroring were seen across all combinations of finger pairs. In addition, enslaving was exaggerated across symptomatic fingers when more than one finger was clinically affected. Task-specific dystonia therefore appears to express along a gradient, most severe in the affected skill with subtle and general motor control dysfunction in the background. Recognition of this provides a more nuanced understanding of the sensorimotor control deficits at play and can inform therapeutic options for this highly disabling disorder.


Subject(s)
Dystonic Disorders , Fingers , Motor Skills , Music , Humans , Fingers/physiopathology , Fingers/physiology , Male , Adult , Female , Dystonic Disorders/physiopathology , Motor Skills/physiology , Middle Aged , Young Adult
2.
Elife ; 132024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980147

ABSTRACT

Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity through fixed connections. Here, we present a new approach that addresses this problem. Rather than focus on task-dependent activity changes in the cerebellum alone, we ask if neocortical inputs to the cerebellum are gated in a task-dependent manner. We hypothesize that input is upregulated when the cerebellum functionally contributes to a task. We first validated this approach using a finger movement task, where the integrity of the cerebellum has been shown to be essential for the coordination of rapid alternating movements but not for force generation. While both neocortical and cerebellar activity increased with increasing speed and force, the speed-related changes in the cerebellum were larger than predicted by an optimized cortico-cerebellar connectivity model. We then applied the same approach in a cognitive domain, assessing how the cerebellum supports working memory. Enhanced gating was associated with the encoding of items in working memory, but not with the manipulation or retrieval of the items. Focusing on task-dependent gating of neocortical inputs to the cerebellum offers a promising approach for using fMRI to understand the specific contributions of the cerebellum to cognitive function.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Cerebellum/physiology , Cerebellum/diagnostic imaging , Humans , Male , Adult , Female , Young Adult , Neocortex/physiology , Neocortex/diagnostic imaging , Memory, Short-Term/physiology , Fingers/physiology
3.
J Neurosci ; 44(22)2024 May 29.
Article in English | MEDLINE | ID: mdl-38641408

ABSTRACT

When performing movements in rapid succession, the brain needs to coordinate ongoing execution with the preparation of an upcoming action. Here we identify the processes and brain areas involved in this ability of online preparation. Human participants (both male and female) performed pairs of single-finger presses or three-finger chords in rapid succession, while 7T fMRI was recorded. In the overlap condition, they could prepare the second movement during the first response and in the nonoverlap condition only after the first response was completed. Despite matched perceptual and movement requirements, fMRI revealed increased brain activity in the overlap condition in regions along the intraparietal sulcus and ventral visual stream. Multivariate analyses suggested that these areas are involved in stimulus identification and action selection. In contrast, the dorsal premotor cortex, known to be involved in planning upcoming movements, showed no discernible signs of heightened activity. This observation suggests that the bottleneck during simultaneous action execution and preparation arises at the level of stimulus identification and action selection, whereas movement planning in the premotor cortex can unfold concurrently with the execution of a current action without requiring additional neural activity.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Psychomotor Performance , Humans , Male , Female , Adult , Psychomotor Performance/physiology , Brain Mapping/methods , Young Adult , Movement/physiology , Reaction Time/physiology , Photic Stimulation/methods , Brain/physiology , Brain/diagnostic imaging
4.
Nat Commun ; 15(1): 2351, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499518

ABSTRACT

In the past, the cerebellum has been best known for its crucial role in motor function. However, increasingly more findings highlight the importance of cerebellar contributions in cognitive functions and neurodevelopment. Using a total of 7240 neuroimaging scans from 4862 individuals, we describe and provide detailed, openly available models of cerebellar development in childhood and adolescence (age range: 6-17 years), an important time period for brain development and onset of neuropsychiatric disorders. Next to a traditionally used anatomical parcellation of the cerebellum, we generated growth models based on a recently proposed functional parcellation. In both, we find an anterior-posterior growth gradient mirroring the age-related improvements of underlying behavior and function, which is analogous to cerebral maturation patterns and offers evidence for directly related cerebello-cortical developmental trajectories. Finally, we illustrate how the current approach can be used to detect cerebellar abnormalities in clinical samples.


Subject(s)
Cerebellum , Cognition , Child , Humans , Adolescent , Neuroimaging , Magnetic Resonance Imaging
5.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38260680

ABSTRACT

The human cerebellum is activated by a wide variety of cognitive and motor tasks. Previous functional atlases have relied on single task-based or resting-state fMRI datasets. Here, we present a functional atlas that integrates information from 7 large-scale datasets, outperforming existing group atlasses. The new atlas has three further advantages: First, the atlas allows for precision mapping in individuals: The integration of the probabilistic group atlas with an individual localizer scan results in a marked improvement in prediction of individual boundaries. Second, we provide both asymmetric and symmetric versions of the atlas. The symmetric version, which is obtained by constraining the boundaries to be the same across hemispheres, is especially useful in studying functional lateralization. Finally, the regions are hierarchically organized across 3 levels, allowing analyses at the appropriate level of granularity. Overall, the new atlas is an important resource for the study of the interdigitated functional organization of the human cerebellum in health and disease.

6.
J Neurosci ; 44(4)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38050100

ABSTRACT

What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.


Subject(s)
Amputees , Brain Mapping , Male , Humans , Female , Brain Mapping/methods , Hand , Amputation, Surgical , Task Performance and Analysis , Magnetic Resonance Imaging/methods , Functional Laterality
7.
Elife ; 122023 08 23.
Article in English | MEDLINE | ID: mdl-37610302

ABSTRACT

Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).


Subject(s)
Big Data , Neurosciences , Humans , Calcium, Dietary , Generalization, Psychological , Neural Networks, Computer
8.
Elife ; 122023 04 21.
Article in English | MEDLINE | ID: mdl-37083692

ABSTRACT

While resting-state fMRI studies have provided a broad picture of the connectivity between human neocortex and cerebellum, the degree of convergence of cortical inputs onto cerebellar circuits remains unknown. Does each cerebellar region receive input from a single cortical area or convergent inputs from multiple cortical areas? Here, we use task-based fMRI data to build a range of cortico-cerebellar connectivity models, each allowing for a different degree of convergence. We compared these models by their ability to predict cerebellar activity patterns for novel Task Sets. Models that allow some degree of convergence provided the best predictions, arguing for convergence of multiple cortical inputs onto single cerebellar voxels. Importantly, the degree of convergence varied across the cerebellum with the highest convergence observed in areas linked to language, working memory, and social cognition. These findings suggest important differences in the way that functional subdivisions of the cerebellum support motor and cognitive function.


Subject(s)
Brain Mapping , Neocortex , Humans , Cerebellum/diagnostic imaging , Memory, Short-Term , Language , Magnetic Resonance Imaging , Neural Pathways
9.
Brain ; 146(4): 1511-1522, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36170332

ABSTRACT

Musician's dystonia presents with a persistent deterioration of motor control during musical performance. A predominant hypothesis has been that this is underpinned by maladaptive neural changes to the somatotopic organization of finger representations within primary somatosensory cortex. Here, we tested this hypothesis by investigating the finger-specific activity patterns in the primary somatosensory and motor cortex using functional MRI and multivariate pattern analysis in nine musicians with dystonia and nine healthy musicians. A purpose-built keyboard device allowed characterization of activity patterns elicited during passive extension and active finger presses of individual fingers. We analysed the data using both traditional spatial analysis and state-of-the art multivariate analyses. Our analysis reveals that digit representations in musicians were poorly captured by spatial analyses. An optimized spatial metric found clear somatotopy but no difference in the spatial geometry between fingers with dystonia. Representational similarity analysis was confirmed as a more reliable technique than all spatial metrics evaluated. Significantly, the dissimilarity architecture was equivalent for musicians with and without dystonia. No expansion or spatial shift of digit representation maps were found in the symptomatic group. Our results therefore indicate that the neural representation of generic finger maps in primary sensorimotor cortex is intact in musician's dystonia. These results speak against the idea that task-specific dystonia is associated with a distorted hand somatotopy and lend weight to an alternative hypothesis that task-specific dystonia is due to a higher-order disruption of skill encoding. Such a formulation can better explain the task-specific deficit and offers alternative inroads for therapeutic interventions.


Subject(s)
Dystonia , Dystonic Disorders , Music , Sensorimotor Cortex , Humans , Fingers , Somatosensory Cortex/diagnostic imaging
10.
Neuroimage ; 264: 119703, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36349595

ABSTRACT

Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces CerebNet, a fully automated, extensively validated, deep learning method for the lobular segmentation of the cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well as cerebellar white matter. CerebNet combines FastSurferCNN, a UNet-based 2.5D segmentation network, with extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC >0.97 on OASIS and Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing cerebellum sub-structure volumes. We make CerebNet available as source-code (https://github.com/Deep-MI/FastSurfer).


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results , Cerebellum/diagnostic imaging
11.
Elife ; 112022 10 20.
Article in English | MEDLINE | ID: mdl-36263932

ABSTRACT

eLife is changing its editorial process to emphasize public reviews and assessments of preprints by eliminating accept/reject decisions after peer review.


Subject(s)
Peer Review, Research , Publishing
12.
Neuroimage ; 263: 119610, 2022 11.
Article in English | MEDLINE | ID: mdl-36064138

ABSTRACT

A deep understanding of the neural architecture of mental function should enable the accurate prediction of a specific pattern of brain activity for any psychological task, based only on the cognitive functions known to be engaged by that task. Encoding models (EMs), which predict neural responses from known features (e.g., stimulus properties), have succeeded in circumscribed domains (e.g., visual neuroscience), but implementing domain-general EMs that predict brain-wide activity for arbitrary tasks has been limited mainly by availability of datasets that 1) sufficiently span a large space of psychological functions, and 2) are sufficiently annotated with such functions to allow robust EM specification. We examine the use of EMs based on a formal specification of psychological function, to predict cortical activation patterns across a broad range of tasks. We utilized the Multi-Domain Task Battery, a dataset in which 24 subjects completed 32 ten-minute fMRI scans, switching tasks every 35 s and engaging in 44 total conditions of diverse psychological manipulations. Conditions were annotated by a group of experts using the Cognitive Atlas ontology to identify putatively engaged functions, and region-wise cognitive EMs (CEMs) were fit, for individual subjects, on neocortical responses. We found that CEMs predicted cortical activation maps of held-out tasks with high accuracy, outperforming a permutation-based null model while approaching the noise ceiling of the data, without being driven solely by either cognitive or perceptual-motor features. Hierarchical clustering on the similarity structure of CEM generalization errors revealed relationships amongst psychological functions. Spatial distributions of feature importances systematically overlapped with large-scale resting-state functional networks (RSNs), supporting the hypothesis of functional specialization within RSNs while grounding their function in an interpretable data-driven manner. Our implementation and validation of CEMs provides a proof of principle for the utility of formal ontologies in cognitive neuroscience and motivates the use of CEMs in the further testing of cognitive theories.


Subject(s)
Brain , Cognition , Humans , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Brain Mapping , Magnetic Resonance Imaging
13.
J Neurosci ; 42(26): 5173-5185, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35606141

ABSTRACT

The integration of somatosensory signals across fingers is essential for dexterous object manipulation. Previous experiments suggest that this integration occurs in neural populations in the primary somatosensory cortex (S1). However, the integration process has not been fully characterized, as previous studies have mainly used 2-finger stimulation paradigms. Here, we addressed this gap by stimulating all 31 single- and multifinger combinations. We measured population-wide activity patterns evoked during finger stimulation in human S1 and primary motor cortex (M1) using 7T fMRI in female and male participants. Using multivariate fMRI analyses, we found clear evidence of unique nonlinear interactions between fingers. In Brodmann area (BA) 3b, interactions predominantly occurred between pairs of neighboring fingers. In BA 2, however, we found equally strong interactions between spatially distant fingers, as well as interactions between finger triplets and quadruplets. We additionally observed strong interactions in the hand area of M1. In both M1 and S1, these nonlinear interactions did not reflect a general suppression of overall activity, suggesting instead that the interactions we observed reflect rich, nonlinear integration of sensory inputs from the fingers. We suggest that this nonlinear finger integration allows for a highly flexible mapping from finger sensory inputs to motor responses that facilitates dexterous object manipulation.SIGNIFICANCE STATEMENT Processing of somatosensory information in primary somatosensory cortex (S1) is essential for dexterous object manipulation. To successfully handle an object, the sensorimotor system needs to detect complex patterns of haptic information, which requires the nonlinear integration of sensory inputs across multiple fingers. Using multivariate fMRI analyses, we characterized brain activity patterns evoked by stimulating all single- and multifinger combinations. We report that progressively stronger multifinger interactions emerge in posterior S1 and in the primary motor cortex (M1), with interactions arising between inputs from neighboring and spatially distant fingers. Our results suggest that S1 and M1 provide the neural substrate necessary to support a flexible mapping from sensory inputs to motor responses of the hand.


Subject(s)
Motor Cortex , Sensorimotor Cortex , Brain Mapping/methods , Female , Fingers/physiology , Hand , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology
14.
Sci Adv ; 8(16): eabk2393, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35452294

ABSTRACT

Electrophysiological studies in monkeys show that finger amputation triggers local remapping within the deprived primary somatosensory cortex (S1). Human neuroimaging research, however, shows persistent S1 representation of the missing hand's fingers, even decades after amputation. Here, we explore whether this apparent contradiction stems from underestimating the distributed peripheral and central representation of fingers in the hand map. Using pharmacological single-finger nerve block and 7-tesla neuroimaging, we first replicated previous accounts (electrophysiological and other) of local S1 remapping. Local blocking also triggered activity changes to nonblocked fingers across the entire hand area. Using methods exploiting interfinger representational overlap, however, we also show that the blocked finger representation remained persistent despite input loss. Computational modeling suggests that both local stability and global reorganization are driven by distributed processing underlying the topographic map, combined with homeostatic mechanisms. Our findings reveal complex interfinger representational features that play a key role in brain (re)organization, beyond (re)mapping.


Subject(s)
Nerve Block , Somatosensory Cortex , Brain Mapping , Fingers/innervation , Hand , Somatosensory Cortex/physiology
15.
Hum Brain Mapp ; 43(12): 3706-3720, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35451538

ABSTRACT

One important approach to human brain mapping is to define a set of distinct regions that can be linked to unique functions. Numerous brain parcellations have been proposed, using cytoarchitectonic, structural, or functional magnetic resonance imaging (fMRI) data. The intrinsic smoothness of brain data, however, poses a problem for current methods seeking to compare different parcellations. For example, criteria that simply compare within-parcel to between-parcel similarity provide even random parcellations with a high value. Furthermore, the evaluation is biased by the spatial scale of the parcellation. To address this problem, we propose the distance-controlled boundary coefficient (DCBC), an unbiased criterion to evaluate discrete parcellations. We employ this new criterion to evaluate existing parcellations of the human neocortex in their power to predict functional boundaries for an fMRI data set with many different tasks, as well as for resting-state data. We find that common anatomical parcellations do not perform better than chance, suggesting that task-based functional boundaries do not align well with sulcal landmarks. Parcellations based on resting-state fMRI data perform well; in some cases, as well as a parcellation defined on the evaluation data itself. Finally, multi-modal parcellations that combine functional and anatomical criteria perform substantially worse than those based on functional data alone, indicating that functionally homogeneous regions often span major anatomical landmarks. Overall, the DCBC advances the field of functional brain mapping by providing an unbiased metric that compares the predictive ability of different brain parcellations to define brain regions that are functionally maximally distinct.


Subject(s)
Brain Mapping , Image Processing, Computer-Assisted , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Probability
16.
J Neurophysiol ; 127(4): 829-839, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35235441

ABSTRACT

Actions involving fine control of the hand, for example, grasping an object, rely heavily on sensory information from the fingertips. Although the integration of feedback during the execution of individual movements is well understood, less is known about the use of sensory feedback in the control of skilled movement sequences. To address this gap, we trained participants to produce sequences of finger movements on a keyboard-like device over a 4-day training period. Participants received haptic, visual, and auditory feedback indicating the occurrence of each finger press. We then either transiently delayed or advanced the feedback for a single press by a small amount of time (30 or 60 ms). We observed that participants rapidly adjusted their ongoing finger press by either accelerating or prolonging the ongoing press, in accordance with the direction of the perturbation. Furthermore, we could show that this rapid behavioral modulation was driven by haptic feedback. Although these feedback-driven adjustments reduced in size with practice, they were still clearly present at the end of training. In contrast to the directionally specific effect we observed on the perturbed press, a feedback perturbation resulted in a delayed onset of the subsequent presses irrespective of perturbation direction or feedback modality. This observation is consistent with a hierarchical organization of even very skilled and fast movement sequences, with different levels reacting distinctly to sensory perturbations.NEW & NOTEWORTHY Sensory feedback is important during the execution of a movement. However, little is known about how sensory feedback is used during the production of movement sequences. Here, we show two distinct feedback processes in the execution of fast finger movement sequences. By transiently delaying or advancing the feedback of a single press within a sequence, we observed a directionally specific effect on the perturbed press and a directionally non-specific effect on the subsequent presses.


Subject(s)
Feedback, Sensory , Hand , Feedback , Fingers , Hand Strength , Humans , Movement , Psychomotor Performance
17.
J Vis Exp ; (180)2022 02 04.
Article in English | MEDLINE | ID: mdl-35188124

ABSTRACT

Multiple lines of research provide compelling evidence for a role of the cerebellum in a wide array of cognitive and affective functions, going far beyond its historical association with motor control. Structural and functional neuroimaging studies have further refined understanding of the functional neuroanatomy of the cerebellum beyond its anatomical divisions, highlighting the need for the examination of individual cerebellar subunits in healthy variability and neurological diseases. This paper presents a standardized pipeline for examining cerebellum grey matter morphometry that combines high-resolution, state-of-the-art approaches for optimized and automated cerebellum parcellation (Automatic Cerebellum Anatomical Parcellation using U-Net Locally Constrained Optimization; ACAPULCO) and voxel-based registration of the cerebellum (Spatially Unbiased Infra-tentorial Template; SUIT) for volumetric quantification. The pipeline has broad applicability to a range of neurological diseases and is fully automated, with manual intervention only required for quality control of the outputs. The pipeline is freely available, with substantial accompanying documentation, and can be run on Mac, Windows, and Linux operating systems. The pipeline is applied in a cohort of individuals with Friedreich ataxia (FRDA), and representative results, as well as recommendations on group-level inferential statistical analyses, are provided. This pipeline could facilitate reliability and reproducibility across the field, ultimately providing a powerful methodological approach for characterizing and tracking cerebellar structural changes in neurological diseases.


Subject(s)
Friedreich Ataxia , Gray Matter , Cerebellum/diagnostic imaging , Cerebellum/pathology , Friedreich Ataxia/complications , Friedreich Ataxia/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results
18.
J Neurophysiol ; 127(3): 756-766, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35171748

ABSTRACT

To achieve fast feedback control of voluntary movements, the visual consequences of our motor commands need to be quickly identified and analyzed by the motor control processes in the brain. These processes work remarkably well even in complex visual environments and in the face of discrepancies between physical actuator and visually perceived effect, e.g. when moving a computer mouse on a visually crowded screen. Here, we use an ambiguous situation in which a single cursor could be controlled by either the left or the right hand to determine the visual and cognitive factors that determine the assignment of a visual stimulus to the corresponding motor command. Our results demonstrate that the visuomotor system is exquisitely sensitive to the spatio-temporal correlation between cursor and hands, learning the appropriate mapping implicitly within several minutes. In contrast, spatial proximity between end effector and visual consequence has an immediate but only transient effect on the assignment process. Finally, an explicit instruction about which hand controls the cursor only has a minor influence when the instruction is presented first. These findings provide insight into the relative importance of the factors that determine the binding of visual information to the corresponding motor structures to enable fast feedback control.NEW & NOTEWORTHY For efficient visuomotor online control, the brain needs to solve the correspondence problem between an ongoing movement and its visual consequences. Here, we challenge the visuomotor system with an ambiguous reaching task, in which the visual feedback was controlled by either hand or by a combination of both. Our findings characterize the properties of a flexible assignment process that quickly takes into account the spatio-temporal properties of movements and the visual scene.


Subject(s)
Feedback, Sensory , Movement , Hand , Learning , Psychomotor Performance , Visual Perception
19.
J Neurophysiol ; 127(4): 995-1006, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35196180

ABSTRACT

We investigated motor skill learning using a path tracking task, where human subjects had to track various curved paths at a constant speed while maintaining the cursor within the path width. Subjects' accuracy increased with practice, even when tracking novel untrained paths. Using a "searchlight" paradigm, where only a short segment of the path ahead of the cursor was shown, we found that subjects with a higher tracking skill differed from the novice subjects in two respects. First, they had lower movement variability, in agreement with previous findings. Second, they took a longer section of the future path into account when performing the task, i.e., had a longer planning horizon. We estimate that between one-third and one-half of the performance increase in the expert group was due to the longer planning horizon. An optimal control model with a fixed horizon (receding horizon control) that increases with tracking skill quantitatively captured the subjects' movement behavior. These findings demonstrate that human subjects not only increase their motor acuity but also their planning horizon when acquiring a motor skill.NEW & NOTEWORTHY We show that when learning a motor skill humans are using information about the environment from an increasingly longer amount of the movement path ahead to improve performance. Crucial features of the behavioral performance can be captured by modeling the behavioral data with a receding horizon optimal control model.


Subject(s)
Learning , Motor Skills , Humans , Movement
20.
Elife ; 112022 01 12.
Article in English | MEDLINE | ID: mdl-35018886

ABSTRACT

Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural processes that occur in human primary motor and somatosensory cortex during planning, and how they relate to those during movement execution, remain poorly understood. Here, we used 7T functional magnetic resonance imaging and a delayed movement paradigm to study single finger movement planning and execution. The inclusion of no-go trials and variable delays allowed us to separate what are typically overlapping planning and execution brain responses. Although our univariate results show widespread deactivation during finger planning, multivariate pattern analysis revealed finger-specific activity patterns in contralateral primary somatosensory cortex (S1), which predicted the planned finger action. Surprisingly, these activity patterns were as informative as those found in contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the detected information was an artifact of subthreshold movements during the preparatory delay. Furthermore, we observed that finger-specific activity patterns during planning were highly correlated to those during execution. These findings reveal that motor planning activates the specific S1 and M1 circuits that are engaged during the execution of a finger press, while activity in both regions is overall suppressed. We propose that preparatory states in S1 may improve movement control through changes in sensory processing or via direct influence of spinal motor neurons.


Subject(s)
Brain/physiology , Motor Cortex/physiology , Psychomotor Performance/physiology , Somatosensory Cortex/physiology , Adult , Brain Mapping/methods , Female , Fingers/physiology , Humans , Magnetic Resonance Imaging/methods , Male , Movement/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...