Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 38(3): 932-6, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14968885

ABSTRACT

A novel, externally controlled microreaction system has been developed to provide the first in situ observations of the reaction processes that control CO2 sequestration via mineral carbonation. The system offers pressure (to 20 MPa), temperature (to 250 degrees C), and activity control suitable for investigating a variety of fluid-fluid and fluid-solid interactions of environmental interest. Mineral sequestration efforts to date have effectively accelerated carbonation, a natural mineral weathering process, to an industrial timescale. However, the associated reaction mechanisms are poorly understood, limiting further process development. Synchrotron X-ray diffraction and Raman spectroscopy have been used to provide the first in situ insight into the associated supercritical mineral carbonation process. Magnesite was found to form directly under the reaction conditions observed (e.g., 150 degrees C and 15 MPa CO2),facilitating geologically stable sequestration. Thermodynamic analysis of fluid-phase species concentrations in the Na+ buffered H2O-CO2 reaction system found the primary aqueous reactant species to be CO2(aq) and HCO3-, with CO2(aq) more prevalent under the reaction conditions observed. The microreactor provides a powerful new tool for in situ investigation of a broad range of environmentally, fundamentally, and commercially important processes, including the reactions associated with geological carbon dioxide sequestration.


Subject(s)
Carbon Dioxide/analysis , Environmental Monitoring/methods , Environment , Minerals/chemistry , Thermodynamics
2.
Environ Sci Technol ; 38(24): 6897-903, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15669355

ABSTRACT

As compared with other candidate carbon sequestration technologies, mineral carbonation offers the unique advantage of permanent disposal via geologically stable and environmentally benign carbonates. The primary challenge is the development of an economically viable process. Enhancing feedstock carbonation reactivity is key. Heat activation dramatically enhances aqueous serpentine carbonation reactivity. Although the present process is too expensive to implement, the materials characteristics and mechanisms that enhance carbonation are of keen interest for further reducing cost. Simultaneous thermogravimetric and differential thermal analysis (TGA/DTA) of the serpentine mineral lizardite was used to isolate a series of heat-activated materials as a function of residual hydroxide content at progressively higher temperatures. Their structure and composition are evaluated via TGA/DTA, X-ray powder diffraction (including phase analysis), and infrared analysis. The meta-serpentine materials that were observed to form ranged from those with longer range ordering, consistent with diffuse stage-2 like interlamellar order, to an amorphous component that preferentially forms at higher temperatures. The aqueous carbonation reaction process was investigated for representative materials via in situ synchrotron X-ray diffraction. Magnesite was observed to form directly at 15 MPa CO2 and at temperatures ranging from 100 to 125 degrees C. Carbonation reactivity is generally correlated with the extent of meta-serpentine formation and structural disorder.


Subject(s)
Asbestos/chemistry , Carbon/chemistry , Carbon/isolation & purification , Hot Temperature , Carbon Dioxide , Coal , Fossil Fuels , Greenhouse Effect , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...