Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 5(2): 262-9, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-26270697

ABSTRACT

Quantum coherences between electronically excited molecules are a signature of entanglement and play an important role for energy transport in molecular assemblies. Here we monitor and analyze for a homologous series of molecular dimers embedded in a solid host the emergence of coherence with decreasing intermolecular distance by single-molecule spectroscopy and quantum chemistry. Coherent signatures appear as an enhancement of the purely electronic transitions in the dimers which is reflected by changes of fluorescence spectra and lifetimes. Effects that destroy the coherence are the coupling to the surroundings and to vibrational excitations. Complementary information is provided by excitation spectra from which the electronic coupling strengths were extracted and found to be in good agreement with calculated values. By revealing various signatures of intermolecular coherence, our results pave the way for the rational design of molecular systems with entangled states.

2.
J Phys Chem B ; 114(4): 1638-47, 2010 Feb 04.
Article in English | MEDLINE | ID: mdl-20058882

ABSTRACT

Absorption and emission spectra of perylene-3,4-dicarboximide (PMI) and perylene-3,4,9,10-tetracarboxdiimide (PDI) derivatives embedded in a thin polymer film were measured by room-temperature bulk and low-temperature single-molecule spectroscopy. In contrast to bulk line narrowing spectra, the low-temperature single-molecule data allowed to unambiguously resolve the vibrational fine structure of the emission spectra. Additionally, the emission spectra were calculated by quantum chemical methods within the Franck-Condon approximation for various N-substituted derivatives of PMI and PDI. The experimental as well as calculated emission spectra are dominated by two spectral regions of high vibronic activity, a band system ranging from the 0-0 transition (at DeltaE(0-0)) down to 600 cm(-1) below DeltaE(0-0) and a band system between approximately 1250 and 1700 cm(-1) below DeltaE(0-0). Apart from the wavenumber region close to DeltaE(0-0) (down to 100 cm(-1) below DeltaE(0-0)), good agreement is found between the calculated and experimental spectra, allowing a clear-cut assignment of the dominant vibrational modes. There are, however, discrepancies in the intensities in particular for low-frequency vibrational modes. These differences between theory and experiment are tentatively attributed to linear electron-phonon coupling which is completely neglected in the calculations and hindered internal rotation that is not properly accounted for in the harmonic approximation. Furthermore, in the experimental spectra, at the bulk as well as the single-molecule level, significant differences between PMI and PDI are observed which are attributed to stronger interactions with the matrix environment in the case of PMI due to the permanent electric dipole moment of that molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...