Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Res ; 28(1): 389, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770938

ABSTRACT

COVID-19 is associated with various neurological symptoms. Serum neurofilament light chain (sNfL) is a robust marker for neuroaxonal injury. Recent studies have shown that elevated levels of sNfL are associated with unfavorable outcome in COVID-19 patients. However, neuroaxonal injury is rare in COVID-19, and renal dysfunction and hypoxia, both of which are known in severe COVID-19, can also increase sNfL levels. Thus, the meaning and mechanisms of sNfL elevation in COVID-19 patients remain unclear. We evaluated sNfL levels in 48 patients with COVID-19 (mean age = 63 years) and correlated them to clinical outcome, the form of oxygen therapy, and creatinine. Levels of sNfL were age adjusted and compared with normal values and z-scores. COVID-19 patients treated with nasal cannula had normal sNfL levels (mean sNfL = 19.6 pg/ml) as well as patients with high-flow treatment (mean sNfL = 40.8 pg/ml). Serum NfL levels were statistically significantly higher in COVID-19 patients treated with mechanical ventilation on intensive care unit (ICU) (mean sNfL = 195.7 pg/ml, p < 0.01). There was a strong correlation between sNfL elevation and unfavorable outcome in COVID-19 patients (p < 0.01). However, serum creatinine levels correlated directly and similarly with sNfL elevation and with unfavorable outcome in COVID-19 patients (p < 0.01). Additionally, multivariate analysis for serum creatinine and sNfL showed that both variables are jointly associated with clinical outcomes. Our results identify renal dysfunction as an important possible confounder for sNfL elevation in COVID-19. Thus, serum creatinine and renal dysfunction should be strongly considered in studies evaluating sNfL as a biomarker in COVID-19.


Subject(s)
COVID-19 , Kidney Diseases , Multiple Sclerosis , Humans , Middle Aged , Creatinine , Intermediate Filaments , Biomarkers , Kidney/physiology
2.
Front Neurosci ; 15: 690013, 2021.
Article in English | MEDLINE | ID: mdl-34924923

ABSTRACT

Aims: Neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH) are biomarkers for neuroaxonal damage. We assessed whether NfL and other biomarker levels in the CSF are correlated to the loss of presynaptic dopamine transporters in neurons as detected with dopamine transporter SPECT (DaTscan). Methods: We retrospectively identified 47 patients (17 Alzheimer's dementia, 10 idiopathic Parkinson's disease, 7 Lewy body dementia, 13 progressive supranuclear palsy or corticobasal degeneration) who received a DaTscan and a lumbar puncture. DaTscan imaging was performed according to current guidelines, and z-scores indicating the decrease in uptake were software based calculated for the nucleus caudatus and putamen. The CSF biomarkers progranulin, total-tau, alpha-synuclein, NfL, and pNfH were correlated with the z-scores. Results: DaTscan results in AD patients did not correlate with any biomarker. Subsuming every movement disorder with nigrostriatal neurodegeneration resulted in a strong correlation between putamen/nucleus caudatus and NfL (nucleus caudatus right p < 0.01, putamen right p < 0.05, left p < 0.05) and between pNfH and putamen (right p < 0.05; left p < 0.042). Subdividing in disease cohorts did not reveal significant correlations. Progranulin, alpha-synuclein, and total-tau did not correlate with DaTscan results. Conclusion: We show a strong correlation of NfL and pNfH with pathological changes in presynaptic dopamine transporter density in the putamen concomitant to nigrostriatal degeneration. This correlation might explain the reported correlation of impaired motor functions in PD and NfL as seen before, despite the pathological heterogeneity of these diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...