Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 25(1): 134-143, 2019 01.
Article in English | MEDLINE | ID: mdl-30300937

ABSTRACT

Climate warming and harvesting affect the dynamics of species across the globe through a multitude of mechanisms, including distribution changes. In fish, migrations to and distribution on spawning grounds are likely influenced by both climate warming and harvesting. The Northeast Arctic (NEA) cod (Gadus morhua) performs seasonal migrations from its feeding grounds in the Barents Sea to spawning grounds along the Norwegian coast. The distribution of cod between the spawning grounds has historically changed at decadal scales, mainly due to variable use of the northern and southern margins of the spawning area. Based on historical landing records, two major hypotheses have been put forward to explain these changes: climate and harvesting. Climate could affect the distribution through, for example, spatial habitat shifts. Harvesting could affect the distribution through impacting the demographic structure. If demographic structure is important, theory predicts increasing spawner size with migration distance. Here, we evaluate these hypotheses with modern data from a period (2000-2016) of increasing temperature and recovering stock structure. We first analyze economic data from the Norwegian fisheries to investigate geographical differences in size of spawning fish among spawning grounds, as well as interannual differences in mean latitude of spawning in relation to changes in temperature and demographic parameters. Second, we analyze genetically determined fish sampled at the spawning grounds to unambiguously separate between migratory NEA cod and potentially smaller sized coastal cod of local origin. Our results indicate smaller spawners farther away from the feeding grounds, hence not supporting the hypothesis that harvesting is a main driver for the contemporary spawning ground distribution. We find a positive correlation between annual mean spawning latitude and temperature. In conclusion, based on contemporary data, there is more support for climate compared to harvesting in shaping spawning ground distribution in this major fish stock in the North Atlantic Ocean.


Subject(s)
Animal Distribution , Climate Change , Fisheries , Gadus morhua/physiology , Reproduction , Animals , Atlantic Ocean , Fisheries/economics , Gadus morhua/genetics , Norway
2.
Proc Natl Acad Sci U S A ; 113(50): 14450-14455, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911775

ABSTRACT

Hunting is the predominant way of controlling many wildlife populations devoid of large carnivores. It subjects animals to mortality rates that far exceed natural rates and that differ markedly in which age, sex, or size classes are removed relative to those of natural predators. To explain the emerging selection pattern we develop behavioral microfoundations for a hunting model, emphasizing in particular the constraints given by the formal and informal norms, rules, and regulations that govern the hunter's choice. We show how a shorter remaining season, competition among hunters, lower sighting probabilities, and higher costs all lead to lower reservation values, i.e., an increased likelihood of shooting a particular animal. Using a unique dataset on seen and shot deer from Norway, we test and confirm the theoretical predictions in a recreational and meat-motivated hunting system. To achieve sustainability, future wildlife management should account for this predictable selection pressure.


Subject(s)
Conservation of Natural Resources , Deer , Firearms , Animals , Animals, Wild , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/statistics & numerical data , Databases, Factual , Decision Making , Ecosystem , Female , Humans , Male , Models, Psychological , Norway , Recreation , Red Meat , Seasons , Social Conditions
SELECTION OF CITATIONS
SEARCH DETAIL
...