Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 31(8): 1078-1090, 2023 08.
Article in English | MEDLINE | ID: mdl-37100374

ABSTRACT

OBJECTIVE: Yes-associated protein (YAP) has been widely studied as a mechanotransducer in many cell types, but its function in cartilage is controversial. The aim of this study was to identify the effect of YAP phosphorylation and nuclear translocation on the chondrocyte response to stimuli relevant to osteoarthritis (OA). DESIGN: Cultured normal human articular chondrocytes from 81 donors were treated with increased osmolarity media as an in vitro model of mechanical stimulation, fibronectin fragments (FN-f) or IL-1ß as catabolic stimuli, and IGF-1 as an anabolic stimulus. YAP function was assessed with gene knockdown and inhibition by verteporfin. Nuclear translocation of YAP and its transcriptional co-activator TAZ and site-specific YAP phosphorylation were determined by immunoblotting. Immunohistochemistry and immunofluorescence to detect YAP were performed on normal and OA human cartilage with different degrees of damage. RESULTS: Chondrocyte YAP/TAZ nuclear translocation increased under physiological osmolarity (400 mOsm) and IGF-1 stimulation, which was associated with YAP phosphorylation at Ser128. In contrast, catabolic stimulation decreased the levels of nuclear YAP/TAZ through YAP phosphorylation at Ser127. Following YAP inhibition, anabolic gene expression and transcriptional activity decreased. Additionally, YAP knockdown reduced proteoglycan staining and levels of type II collagen. Total YAP immunostaining was greater in OA cartilage, but YAP was sequestered in the cytosol in cartilage areas with more severe damage. CONCLUSIONS: YAP chondrocyte nuclear translocation is regulated by differential phosphorylation in response to anabolic and catabolic stimuli. Decreased nuclear YAP in OA chondrocytes may contribute to reduced anabolic activity and promotion of further cartilage loss.


Subject(s)
Cartilage, Articular , Osteoarthritis , YAP-Signaling Proteins , Humans , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/metabolism , Insulin-Like Growth Factor I/pharmacology , Osteoarthritis/metabolism , Transcription Factors/genetics
2.
Osteoarthritis Cartilage ; 29(3): 402-412, 2021 03.
Article in English | MEDLINE | ID: mdl-33227437

ABSTRACT

OBJECTIVE: Cellular senescence is a phenotypic state characterized by stable cell-cycle arrest, enhanced lysosomal activity, and the secretion of inflammatory molecules and matrix degrading enzymes. Senescence has been implicated in osteoarthritis (OA) pathophysiology; however, the mechanisms that drive senescence induction in cartilage and other joint tissues are unknown. While numerous physiological signals are capable of initiating senescence, one emerging theme is that damaged cells convert to senescence in response to sustained mitogenic stimulation. The goal of this study was to develop an in vitro articular cartilage explant model to investigate the mechanisms of senescence induction. DESIGN: This study utilized healthy cartilage derived from cadaveric equine stifles and human ankles. Explants were irradiated to initiate DNA damage, and mitogenic stimulation was provided through serum-containing medium and treatment with transforming growth factor ß1 and basic fibroblastic growth factor. Readouts of senescence were a quantitative flow cytometry assay to detect senescence-associated ß galactosidase activity (SA-ß-gal), immunofluorescence for p16 and γH2AX, and qPCR for the expression of inflammatory genes. RESULTS: Human cartilage explants required both irradiation and mitogenic stimulation to induce senescence as compared to baseline control conditions (7.16% vs 2.34% SA-ß-gal high, p = 0.0007). These conditions also resulted in chondrocyte clusters within explants, a persistent DNA damage response, increased p16, and gene expression changes. CONCLUSIONS: Treatment of cartilage explants with mitogenic stimuli in the context of cellular damage reliably induces high levels of SA-ß-gal activity and other senescence markers, which provides a physiologically relevant model system to investigate the mechanisms of senescence induction.


Subject(s)
Cartilage, Articular/metabolism , Cellular Senescence/genetics , Chondrocytes/metabolism , Animals , Ankle Joint , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Cellular Senescence/drug effects , Chemokine CCL2/drug effects , Chemokine CCL2/genetics , Chondrocytes/drug effects , Cyclin-Dependent Kinase Inhibitor p16/drug effects , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA Damage/genetics , Fibroblast Growth Factor 2/pharmacology , Gene Expression/drug effects , Histones/drug effects , Histones/metabolism , Horses , Humans , In Vitro Techniques , Inflammation/genetics , Insulin-Like Growth Factor Binding Protein 3/drug effects , Insulin-Like Growth Factor Binding Protein 3/genetics , Interleukin-6/genetics , Matrix Metalloproteinase 13/drug effects , Matrix Metalloproteinase 13/genetics , Mitogens/pharmacology , Stifle , Transforming Growth Factor beta1/pharmacology , beta-Galactosidase/drug effects , beta-Galactosidase/metabolism
3.
Int J Obes (Lond) ; 37(8): 1079-87, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23164698

ABSTRACT

INTRODUCTION: Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency and immunophenotype of adult stem cells from a variety of tissues. MATERIALS AND METHODS: Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs) and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet-induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. RESULTS: Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased platelet-derived growth factor receptor α expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. CONCLUSIONS: These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.


Subject(s)
Adipose Tissue/pathology , Cell Differentiation , Fatty Acids, Nonesterified , Mesenchymal Stem Cells/pathology , Obesity/pathology , Adipogenesis , Animals , Cell Culture Techniques , Cell Proliferation , Cells, Cultured , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Patella , Risk Factors , Subcutaneous Fat/pathology
4.
Osteoarthritis Cartilage ; 18(9): 1167-73, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20633670

ABSTRACT

OBJECTIVE: Increased pro-inflammatory cytokines and reactive oxygen and nitrogen species (RONS) occur in osteoarthritis (OA). Oxygen tension can alter the levels of RONS induced by interleukin-1 (IL-1). RONS such as nitric oxide (NO) can alter energy metabolism. The aim of this study was to determine if oxygen tension alters energy metabolism, in articular cartilage, in response to IL-1 or NO and to determine if cell death occurred. DESIGN: Porcine articular chondrocytes were incubated with IL-1 or the NO donor NOC-18 for 48 h in either 1, 5 or 20% O(2). Adenosine triphosphate (ATP) levels were measured and immunoblots for adenosine monophosphate-activated protein kinase (AMPK) were done. Protein translation was measured by S6 activation. Senescence and autophagy were determined by increased caveolin or conversion of LC3-I to LC3-II respectively. RESULTS: One percent O(2) significantly reduced ATP levels compared with 20% O(2). Five percent O(2) significantly increased ATP levels compared with 20% O(2). One percent O(2) significantly increased phospho-AMPK (pAMPK) protein expression compared with 5 or 20% O(2). Oxygen tension had no effects on pS6, caveolin or LC3-II levels. IL-1-induced NO production was significantly reduced with decreased oxygen tension, and significantly reduced ATP levels at all oxygen tensions, but pAMPK was only significantly increased at 5% O(2). IL-1 significantly reduced pS6 at all oxygen tensions. IL-1 had no effects on caveolin and significantly increased LC3-II at 20% O(2) only. NOC-18 significantly reduced ATP levels at all oxygen tensions, and significantly increased pAMPK at 5% O(2) only, and significantly decreased pAMPK at 1% O(2). NOC-18 significantly reduced pS6 at 1% O(2) and significantly increased caveolin at 5% O(2), and LC3-II at 1% O(2). CONCLUSION: Our data suggest 5% O(2) is optimal for energy metabolism and protective to some effects of IL-1 and NO. NO has the greatest effects on ATP levels and the induction of autophagy at 1% O(2).


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Energy Metabolism/physiology , Hypoxia , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , AMP-Activated Protein Kinases/analysis , Adenosine Triphosphate/analysis , Animals , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Cell Death/drug effects , Immunoblotting , Interleukin-1/pharmacology , Nitric Oxide/pharmacology , Nitric Oxide Donors/pharmacology , Nitroso Compounds , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...