Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 61(1): 154-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25274553

ABSTRACT

BACKGROUND: Dideoxy-based chain termination sequencing developed by Sanger is the gold standard sequencing approach and allows clinical diagnostics of disorders with relatively low genetic heterogeneity. Recently, new next generation sequencing (NGS) technologies have found their way into diagnostic laboratories, enabling the sequencing of large targeted gene panels or exomes. The development of benchtop NGS instruments now allows the analysis of single genes or small gene panels, making these platforms increasingly competitive with Sanger sequencing. METHODS: We developed a generic automated ion semiconductor sequencing work flow that can be used in a clinical setting and can serve as a substitute for Sanger sequencing. Standard amplicon-based enrichment remained identical to PCR for Sanger sequencing. A novel postenrichment pooling strategy was developed, limiting the number of library preparations and reducing sequencing costs up to 70% compared to Sanger sequencing. RESULTS: A total of 1224 known pathogenic variants were analyzed, yielding an analytical sensitivity of 99.92% and specificity of 99.99%. In a second experiment, a total of 100 patient-derived DNA samples were analyzed using a blind analysis. The results showed an analytical sensitivity of 99.60% and specificity of 99.98%, comparable to Sanger sequencing. CONCLUSIONS: Ion semiconductor sequencing can be a first choice mutation scanning technique, independent of the genes analyzed.


Subject(s)
DNA/analysis , High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Sequence Analysis, DNA/methods , DNA/genetics , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing/instrumentation , Humans , Molecular Diagnostic Techniques/instrumentation , Polymerase Chain Reaction , Reproducibility of Results , Robotics , Semiconductors , Sensitivity and Specificity , Sequence Analysis, DNA/instrumentation
2.
Eur J Hum Genet ; 21(11): 1312-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23443022

ABSTRACT

Although SPG11 is the most common complicated hereditary spastic paraplegia, our knowledge of the long-term prognosis and life expectancy is limited. We therefore studied the disease course of all patients with a proven SPG11 mutation as tested in our laboratory, the single Dutch laboratory providing SPG11 mutation analysis, between 1 January 2009 and 1 January 2011. We identified nine different SPG11 mutations, four of which are novel, in nine index patients. Eighteen SPG11 patients from these nine families were studied by means of a retrospective chart analysis and additional interview/examination. Ages at onset were between 4 months and 14 years; 39% started with learning difficulties rather than gait impairment. Brain magnetic resonance imaging showed a thin corpus callosum and typical periventricular white matter changes in the frontal horn region (known as the 'ears-of the lynx'-sign) in all. Most patients became wheelchair bound after a disease duration of 1 to 2 decades. End-stage disease consisted of loss of spontaneous speech, severe dysphagia, spastic tetraplegia with peripheral nerve involvement and contractures. Several patients died of complications between ages 30 and 48 years, 3-4 decades after onset of gait impairment. Other relevant features during the disease were urinary and fecal incontinence, obesity and psychosis. Our study of 18 Dutch SPG11-patients shows the potential serious long-term consequences of SPG11 including a possibly restricted life span.


Subject(s)
Disease Progression , Spastic Paraplegia, Hereditary/pathology , Adolescent , Adult , Brain/pathology , Follow-Up Studies , Fundus Oculi , Humans , Magnetic Resonance Imaging , Middle Aged , Mutation/genetics , Netherlands , Phenotype , Proteins/genetics , Spastic Paraplegia, Hereditary/genetics , Young Adult
3.
Am J Hum Genet ; 91(6): 1073-81, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23176823

ABSTRACT

We report on four families affected by a clinical presentation of complex hereditary spastic paraplegia (HSP) due to recessive mutations in DDHD2, encoding one of the three mammalian intracellular phospholipases A(1) (iPLA(1)). The core phenotype of this HSP syndrome consists of very early-onset (<2 years) spastic paraplegia, intellectual disability, and a specific pattern of brain abnormalities on cerebral imaging. An essential role for DDHD2 in the human CNS, and perhaps more specifically in synaptic functioning, is supported by a reduced number of active zones at synaptic terminals in Ddhd-knockdown Drosophila models. All identified mutations affect the protein's DDHD domain, which is vital for its phospholipase activity. In line with the function of DDHD2 in lipid metabolism and its role in the CNS, an abnormal lipid peak indicating accumulation of lipids was detected with cerebral magnetic resonance spectroscopy, which provides an applicable diagnostic biomarker that can distinguish the DDHD2 phenotype from other complex HSP phenotypes. We show that mutations in DDHD2 cause a specific complex HSP subtype (SPG54), thereby linking a member of the PLA(1) family to human neurologic disease.


Subject(s)
Genes, Recessive , Mutation , Phospholipases/genetics , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Base Sequence , Central Nervous System/pathology , Child , Child, Preschool , Facies , Female , Gene Order , Genotype , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/diagnosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...