Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Histochem Cell Biol ; 160(3): 223-251, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37428210

ABSTRACT

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks.


Subject(s)
Microscopy , Software , Humans , Community Support
2.
bioRxiv ; 2023 May 07.
Article in English | MEDLINE | ID: mdl-36865282

ABSTRACT

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself -- OME-Zarr -- along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain -- the file format that underlies so many personal, institutional, and global data management and analysis tasks.

4.
Nat Protoc ; 15(9): 2773-2784, 2020 09.
Article in English | MEDLINE | ID: mdl-32737465

ABSTRACT

Spherical aberration (SA) occurs when light rays entering at different points of a spherical lens are not focused to the same point of the optical axis. SA that occurs inside the lens elements of a fluorescence microscope is well understood and corrected for. However, SA is also induced when light passes through an interface of refractive index (RI)-mismatched substances (i.e., a discrepancy between the RI of the immersion medium and the RI of the sample). SA due to RI mismatches has many deleterious effects on imaging. Perhaps most important for 3D imaging is that the distance the image plane moves in a sample is not equivalent to the distance traveled by an objective (or stage) during z-stack acquisition. This non-uniform translation along the z axis gives rise to artifactually elongated images (if the objective is immersed in a medium with a higher RI than that of the sample) or compressed images (if the objective is immersed in a medium with a lower RI than that of the sample) and alters the optimal axial sampling rate. In this tutorial, we describe why this distortion occurs, how it impacts quantitative measurements and axial resolution, and what can be done to avoid SA and thereby prevent distorted images. In addition, this tutorial aims to better inform researchers of how to correct RI mismatch-induced axial distortions and provides a practical ImageJ/Fiji-based tool to reduce the prevalence of volumetric measurement errors and lost axial resolution.


Subject(s)
Artifacts , Imaging, Three-Dimensional , Microscopy, Fluorescence , Scattering, Radiation , Fluorescent Dyes/chemistry , Microspheres
5.
Proc Natl Acad Sci U S A ; 117(21): 11744-11752, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32404418

ABSTRACT

Auditory experience drives neural circuit refinement during windows of heightened brain plasticity, but little is known about the genetic regulation of this developmental process. The primary auditory cortex (A1) of mice exhibits a critical period for thalamocortical connectivity between postnatal days P12 and P15, during which tone exposure alters the tonotopic topography of A1. We hypothesized that a coordinated, multicellular transcriptional program governs this window for patterning of the auditory cortex. To generate a robust multicellular map of gene expression, we performed droplet-based, single-nucleus RNA sequencing (snRNA-seq) of A1 across three developmental time points (P10, P15, and P20) spanning the tonotopic critical period. We also tone-reared mice (7 kHz pips) during the 3-d critical period and collected A1 at P15 and P20. We identified and profiled both neuronal (glutamatergic and GABAergic) and nonneuronal (oligodendrocytes, microglia, astrocytes, and endothelial) cell types. By comparing normal- and tone-reared mice, we found hundreds of genes across cell types showing altered expression as a result of sensory manipulation during the critical period. Functional voltage-sensitive dye imaging confirmed GABA circuit function determines critical period onset, while Nogo receptor signaling is required for its closure. We further uncovered previously unknown effects of developmental tone exposure on trajectories of gene expression in interneurons, as well as candidate genes that might execute tonotopic plasticity. Our single-nucleus transcriptomic resource of developing auditory cortex is thus a powerful discovery platform with which to identify mediators of tonotopic plasticity.


Subject(s)
Auditory Cortex , Cell Nucleus/metabolism , RNA , Single-Cell Analysis/methods , Transcriptome/genetics , Animals , Auditory Cortex/growth & development , Auditory Cortex/metabolism , Gene Expression Regulation, Developmental/genetics , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Mice , Nogo Receptors/genetics , Nogo Receptors/metabolism , RNA/analysis , RNA/genetics , RNA/metabolism , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...