Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14587, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666884

ABSTRACT

We tackle the problem of coupling a spatiotemporal model for simulating the spread and control of an invasive alien species with data coming from image processing and expert knowledge. In this study, we implement a spatially explicit optimal control model based on a reaction-diffusion equation which includes an Holling II type functional response term for modeling the density control rate. The model takes into account the budget constraint related to the control program and searches for the optimal effort allocation for the minimization of the invasive alien species density. Remote sensing and expert knowledge have been assimilated in the model to estimate the initial species distribution and its habitat suitability, empirically extracted by a land cover map of the study area. The approach has been applied to the plant species Ailanthus altissima (Mill.) Swingle within the Alta Murgia National Park. This area is one of the Natura 2000 sites under the study of the ongoing National Biodiversity Future Center (NBFC) funded by the Italian National Recovery and Resilience Plan (NRRP), and pilot site of the finished H2020 project ECOPOTENTIAL, which aimed at the integration of modeling tools and Earth Observations for a sustainable management of protected areas. Both the initial density map and the land cover map have been generated by using very high resolution satellite images and validated by means of ground truth data provided by the EU Life Alta Murgia Project (LIFE12 BIO/IT/000213), a project aimed at the eradication of A. altissima in the Alta Murgia National Park.


Subject(s)
Ailanthus , Parks, Recreational , Remote Sensing Technology , Biodiversity , Budgets , Introduced Species
2.
Chaos Solitons Fractals ; 150: 111063, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34054229

ABSTRACT

In this paper, we use the Z-control approach to get further insight on the role of awareness in the management of epidemics that, just like Covid-19, display a high rate of overexposure because of the large number of asymptomatic people. We focus on a SEIR model including a overexposure mechanism and consider awareness as a time-dependent variable whose dynamics is not assigned a priori. Exploiting the potential of awareness to produce social distancing and self-isolation among susceptibles, we use it as an indirect control on the class of infective individuals and apply the Z-control approach to detect what trend must awareness display over time in order to eradicate the disease. To this aim, we generalize the Z-control procedure to appropriately treat an uncontrolled model with more than two governing equations. Analytical and numerical investigations on the resulting Z-controlled system show its capability in controlling some representative dynamics within both the backward and the forward scenarios. The awareness variable is qualitatively compared to Google Trends data on Covid-19 that are discussed in the perspective of the Z-control approach, inferring qualitative indications in view of the disease control. The cases of Italy and New Zealand in the first phase of the pandemic are analyzed in detail. The theoretical framework of the Z-control approach can hence offer the chance to reflect on the use of Google Trends as a possible indicator of good management of the epidemic.

3.
Math Biosci ; 315: 108215, 2019 09.
Article in English | MEDLINE | ID: mdl-31202787

ABSTRACT

We investigate how the Z-type dynamic approach can be applied to control backward bifurcation phenomena in epidemic models. Because of its rich phenomenology, that includes stationary or oscillatory subcritical persistence of the disease, we consider the SIR model introduced by Zhou & Fan in [Nonlinear Analysis: Real World Applications, 13(1), 312-324, 2012] and apply the Z-control approach in the specific case of indirect control of the infective population. We derive the associated Z-controlled model both when the desired Z-controlled equilibrium is an endemic equilibrium with a very low number of infectives and when the Z-controlled equilibrium is a disease-free equilibrium. We investigate the properties of these Z-controlled models from the point of view of the dynamical system theory and elucidate the key role of the design parameter λ. Numerical investigations on the model also highlight the impacts of the Z-control method on the backward scenario and on a variety of dynamical regimes emerging from it.


Subject(s)
Computer Simulation , Disease Eradication , Epidemics , Models, Theoretical , Nonlinear Dynamics , Humans
4.
PLoS Comput Biol ; 14(4): e1006073, 2018 04.
Article in English | MEDLINE | ID: mdl-29698395

ABSTRACT

The beneficial effects of physical activity for the prevention and management of several chronic diseases are widely recognized. Mathematical modeling of the effects of physical exercise in body metabolism and in particular its influence on the control of glucose homeostasis is of primary importance in the development of eHealth monitoring devices for a personalized medicine. Nonetheless, to date only a few mathematical models have been aiming at this specific purpose. We have developed a whole-body computational model of the effects on metabolic homeostasis of a bout of physical exercise. Built upon an existing model, it allows to detail better both subjects' characteristics and physical exercise, thus determining to a greater extent the dynamics of the hormones and the metabolites considered.


Subject(s)
Energy Metabolism/physiology , Exercise/physiology , Models, Biological , Adult , Blood Glucose/metabolism , Computational Biology , Computer Simulation , Epinephrine/blood , Glucagon/blood , Gluconeogenesis , Glycerol/blood , Glycogenolysis , Homeostasis/physiology , Humans , Insulin/blood , Male , Oxygen Consumption/physiology , Precision Medicine , Tissue Distribution , Young Adult
5.
Math Biosci ; 280: 10-23, 2016 10.
Article in English | MEDLINE | ID: mdl-27474208

ABSTRACT

We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two ecological models: the classical Lotka-Volterra model and a model related to a case study of the wolf-wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how the Z-control method acts in respect to different dynamical regimes of the uncontrolled model.


Subject(s)
Food Chain , Nonlinear Dynamics , Animals , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...