Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Chemosphere ; 309(Pt 1): 136537, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36150485

ABSTRACT

Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasibility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m-3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 °C. Results showed that specific methane production of UASB was 249 ± 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m-3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side-stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 µm) in the ultrafiltration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.


Subject(s)
Refuse Disposal , Wastewater , Wastewater/chemistry , Biofuels , Sewage/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Food , Fertilizers , Methane/chemistry , Bioreactors , Nitrogen , Nutrients , Soil
3.
Sci Rep ; 10(1): 21263, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277520

ABSTRACT

Difficulties in the production of lignin from rice straw because of high silica content in the recovered lignin reduce its recovery yield and applications as bio-fuel and aromatic chemicals. Therefore, the objective of this study is to develop a novel method to reduce the silica content in lignin from rice straw more effectively and selectively. The method is established by monitoring the precipitation behavior as well as the chemical structure of precipitate by single-stage acidification at different pH values of black liquor collected from the alkaline treatment of rice straw. The result illustrates the significant influence of pH on the physical and chemical properties of the precipitate and the supernatant. The simple two-step acidification of the black liquor at pilot-scale by sulfuric acid 20w/v% is applied to recover lignin at pH 9 and pH 3 and gives a percentage of silica removal as high as 94.38%. Following the developed process, the high-quality lignin could be produced from abundant rice straw at the industrial-scale.

4.
Crit Rev Biotechnol ; 39(6): 779-799, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31137977

ABSTRACT

India has emerged as a key player with a high potential to develop a biomass and biobased economy due to its large geographic size and the massive amounts of agricultural and non agricultural biomass produced. India has joined hands with Europe to synchronize its efforts to create and facilitate the development of a biobased economy in this country. This paper aims to examine common research and development actions between the European Union (EU) and India to facilitate the development of these biobased economies. As a base, a thorough study has been performed considering the biomass potential and current status of the bioeconomy in both the EU and India based on the distillation of a series of 80 potential recommendations. The recommendations were grouped into four major categories: (1) biomass production, (2) by-products/waste, (3) biorefineries and (4) policy, market, and value-added products. A questionnaire was designed and distributed to key stakeholders belonging to: academia, industry, and policymakers in both India and the EU. A total of 231 responses were received and analyzed, based on the key recommendations made for the essential research and development topics that are of prime importance to develop biobased economies in both the EU and India. The findings of this study suggest recognizing the value-added contributions made by biobased products such as: food, feed, valuable materials and chemicals in both regions. It is important to reduce the overall process costs and minimize the environmental impacts of such a biobased economy.


Subject(s)
Biotechnology , Biomass , Biotechnology/economics , Biotechnology/organization & administration , Biotechnology/trends , Europe , Humans , India
5.
Water Sci Technol ; 73(3): 597-606, 2016.
Article in English | MEDLINE | ID: mdl-26877043

ABSTRACT

This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m(3).d. The volumetric biogas production of the digester was 1.94 ± 0.34 m(3)/m(3).d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.


Subject(s)
Garbage , Refuse Disposal/methods , Sewage/analysis , Waste Disposal, Fluid/methods , Biofuels/analysis , Biological Oxygen Demand Analysis , Bioreactors , Filtration , Methane/analysis , Refuse Disposal/instrumentation , Vietnam , Waste Disposal, Fluid/instrumentation
6.
Food Chem ; 173: 827-37, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25466096

ABSTRACT

In this study, a process for the production of premium quality yellowish, cloudy pear juice from low-quality fruit under low-oxygen conditions was developed. The production process consisted of (1) shredding, (2) pressing with spiral-filter technology including a vacuumised extraction cell, (3) holding in an inert gas buffer tank, (4) pasteurisation, (5) and refrigerated storage. First, the system parameters of a spiral-filter press were optimised with the aim of producing a yellowish, cloudy pear juice with the highest possible juice yield. A maximum juice yield of 78% could be obtained. Enzymatic browning during juice extraction could be suppressed as a result of the fast processing and the low air (oxygen) levels in the extraction chamber of the spiral-filter press. Furthermore, we observed that instantaneous pasteurisation at 107 °C for 6s, subsequent aluminium laminate packaging and cold storage had only a minimum effect on the phenolic composition.


Subject(s)
Beverages , Food Industry/methods , Fruit/chemistry , Pyrus/chemistry , Oxygen , Phenols/analysis
7.
Food Chem ; 173: 986-96, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25466116

ABSTRACT

In this study, advantages and disadvantages of the innovative, low-oxygen spiral-filter press system were studied in comparison with the belt press, commonly applied in small and medium size enterprises for the production of cloudy apple juice. On the basis of equivalent throughput, a higher juice yield could be achieved with spiral-filter press. Also a more turbid juice with a higher content of suspended solids could be produced. The avoidance of enzymatic browning during juice extraction led to an attractive yellowish juice with an elevated phenolic content. Moreover, it was found that juice produced with spiral-filter press demonstrates a higher retention of phenolic compounds during the downstream processing steps and storage. The results demonstrates the advantage of the use of a spiral-filter press in comparison with belt press in the production of a high quality cloudy apple juice rich in phenolic compounds, without the use of oxidation inhibiting additives.


Subject(s)
Beverages/analysis , Filtration/methods , Food Industry/instrumentation , Fruit/chemistry , Malus/chemistry , Food Industry/methods , Phenols/analysis
8.
N Biotechnol ; 32(1): 109-20, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-24355428

ABSTRACT

The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some of the issues that, among others, have to be addressed and tested for cost-effective CO2 sequestration.


Subject(s)
Bacteria/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Climate Change , Conservation of Natural Resources , Soil/chemistry , Water Microbiology , Conservation of Natural Resources/economics
9.
N Biotechnol ; 32(1): 100-8, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-24284045

ABSTRACT

This review aims to explore the needs and opportunities of research & development in the field of biowaste biorefinery in Europe. Modern industry in recent years is giving its close attention on organic waste as a new precious bioresource. Specific biowaste valorisation pathways are focusing on food processing waste, being food sector the first manufacture in Europe. Anyway they need to be further tested and validated and then transferred at the larger scale. In particular, they also need to become integrated, combining biomass pretreatments and recovery of biogenic chemicals with bioconversion processes in order to obtain a large class of chemicals. This will help to (a) use the whole biowaste, by avoiding producing residues and providing to the approach the required environmental sustainability, and (b) producing different biobased products that enter different markets, to get the possible economical sustainability of the whole biorefinery. However, the costs of the developed integrated processes might be high, mostly for the fact that the industry dealing with such issues is still underdeveloped and therefore dominated by high processing costs. Such costs can be significantly reduced by intensifying research & development on process integration and intensification. The low or no cost of starting material along with the environmental benefits coming from the concomitant biowaste disposal would offset the high capital costs for initiating such a biorefinery. As long as the oil prices tend to increase (and they will) this strategy will become even more attractive.


Subject(s)
Biotechnology/methods , Research , Waste Products/analysis , Biomass , Europe , Inventions , Renewable Energy
10.
Water Res ; 51: 64-72, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24388832

ABSTRACT

Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans.


Subject(s)
Acidithiobacillus/metabolism , Geologic Sediments/microbiology , Groundwater/microbiology , Metal Nanoparticles/chemistry , Peptococcaceae/metabolism , Sulfates/metabolism , Water Purification/methods , Acidithiobacillus/genetics , Base Sequence , Belgium , Cluster Analysis , DNA Primers/genetics , Iron/chemistry , Iron/metabolism , Molecular Sequence Data , Oxidation-Reduction , Peptococcaceae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , X-Ray Diffraction
11.
Environ Technol ; 34(13-16): 1935-45, 2013.
Article in English | MEDLINE | ID: mdl-24350447

ABSTRACT

In this study, domestic wastewater was given a second life as dilution medium for concentrated organic waste streams, in particular artificial food waste. A two-step continuous process with first volatile fatty acid (VFA)/hydrogen production and second electricity production in microbial fuel cells (MFCs) was employed. For primary treatment, bioreactors were optimized to produce hydrogen and VFAs. Hydrolysis of the solids and formation of fermentation products and hydrogen was monitored. In the second step, MFCs were operated batch-wise using the effluent rich in VFAs specifically acetic acid from the continuous reactor of the first step. The combined system was able to reduce the chemical oxygen demand load by 90%. The concentration of VFAs was also monitored regularly in the MFCs and showed a decreasing trend over time. Further, the anode potential changed from -500 to OmV vs. Ag/AgCl when the VFAs (especially acetate) were depleted in the system. On feeding the system again with the effluent, the anode potential recovered back to -500 mV vs. Ag/AgCl. Thus, the overall aim of converting chemical energy into electrical energy was achieved with a columbic efficiency of 46% generating 65.33 mA/m2 at a specific cell potential of 148 mV.


Subject(s)
Bioelectric Energy Sources , Fatty Acids, Volatile/chemistry , Fatty Acids, Volatile/metabolism , Sewage , Waste Disposal, Fluid/methods , Bioreactors , Electricity , Electrochemical Techniques , Fatty Acids, Volatile/analysis , Fermentation , Hydrogen-Ion Concentration , Waste Disposal, Fluid/instrumentation
12.
Environ Sci Technol ; 47(16): 9014-27, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23931701

ABSTRACT

The growth of the biobased economy will lead to an increase in new biorefinery activities. All biorefineries face the regular challenges of efficiently and economically treating their effluent to be compatible with local discharge requirements and to minimize net water consumption. The amount of wastes resulting from biorefineries industry is exponentially growing. The valorization of such wastes has drawn considerable attention with respect to resources with an observable economic and environmental concern. This has been a promising field which shows great prospective toward byproduct usage and increasing value obtained from the biorefinery. However, full-scale realization of biorefinery wastes valorization is not straightforward because several microbiological, technological and economic challenges need to be resolved. In this review we considered valorization options for cereals based biorefineries wastes while identifying their challenges and exploring the opportunities for future process.


Subject(s)
Biofuels , Edible Grain , Industrial Waste/economics , Lignin/chemistry
14.
Bioresour Technol ; 129: 582-91, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23274222

ABSTRACT

The feasibility of algae harvesting with submerged flat panel membranes was investigated as pre-concentration step prior to centrifugation. Polishing of the supernatant coming from the centrifuge was evaluated as well. The effect of membrane polymer (polyvinyl chloride [PVC], polyethersulfone polyvinyl-pyrollidone [PES-PVP], poly vinylidene fluoride [PVDF]), pore size (microfiltration [MF], ultrafiltration [UF]), algae cell concentrations and species were investigated at lab-scale. In addition, backwashing as fouling control was compared to standard relaxation. PVDF was the superior polymer, and UF showed better fouling resistance. Backwashing outperformed relaxation in fouling control. The backwashable membranes allowed up to 300% higher fluxes compared to commercial flat panel benchmark (PVC) membranes. Estimations on energy consumption for membrane filtration followed by centrifugation revealed relatively low values of 0.169 kW h/kg of dry weight of algae compared to 0.5 kW h/kg for algae harvesting via classical centrifuge alone.


Subject(s)
Aquaculture/instrumentation , Batch Cell Culture Techniques/instrumentation , Bioreactors/microbiology , Membranes, Artificial , Microalgae/growth & development , Microalgae/isolation & purification , Benchmarking , Equipment Design , Equipment Failure Analysis
15.
Chemosphere ; 90(4): 1366-71, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23000047

ABSTRACT

In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20±1°C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ(34)S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ(34)S and δ(18)O in biotic conditions and we also highlight a good relationship between δ(34)S and sulfate reduction rate in biotic columns.


Subject(s)
Environmental Restoration and Remediation/methods , Groundwater/chemistry , Metals/chemistry , Water Pollutants, Chemical/chemistry , Metals/analysis , Oxygen Isotopes/analysis , Sulfur Isotopes/analysis , Water Pollutants, Chemical/analysis
16.
Bioresour Technol ; 111: 368-77, 2012 May.
Article in English | MEDLINE | ID: mdl-22406098

ABSTRACT

A continuous cultivation of Clostridium acetobutylicum ATCC 824 is described using a two-stage design to mimic the two phases of batch culture growth of the organism. A hydrophobic pervaporation unit was coupled to the second fermentor containing the highest solvent titers. This in situ product recovery technology efficiently decreased butanol toxicity in the fermentor while the permeate was enriched to 57-195 g L(-1) total solvents depending on the solvent concentrations in the fermentor. By the alleviation of product inhibition, the glucose concentration could be increased from 60 to 126 g L(-1) while the productivity increased concomitantly from 0.13 to 0.30 g L(-1)h(-1). The continuous fermentation was conducted for 1172 h during which the pervaporation was coupled to the second fermentor for 475 h with an average flux of 367 g m(-2)h(-1). The energy consumption was calculated for a 2 wt.% n-butanol fermentation broth and compared with the conventional process.


Subject(s)
Clostridium acetobutylicum/growth & development , Dimethylpolysiloxanes , Clostridium acetobutylicum/metabolism , Fermentation
17.
Enzyme Microb Technol ; 49(6-7): 580-8, 2011 Dec 10.
Article in English | MEDLINE | ID: mdl-22142735

ABSTRACT

ß-Galactosidase is an important enzyme catalyzing not only the hydrolysis of lactose to the monosaccharides glucose and galactose but also the transgalactosylation reaction to produce galacto-oligosaccharides (GOS). In this study, ß-galactosidase was immobilized by adsorption on a mixed-matrix membrane containing zirconium dioxide. The maximum ß-galactosidase adsorbed on these membranes was 1.6 g/m², however, maximal activity was achieved at an enzyme concentration of around 0.5 g/m². The tests conducted to investigate the optimal immobilization parameters suggested that higher immobilization can be achieved under extreme parameters (pH and temperature) but the activity was not retained at such extreme operational parameters. The investigations on immobilized enzymes indicated that no real shift occurred in its optimal temperature after immobilization though the activity in case of immobilized enzyme was better retained at lower temperature (5 °C). A shift of 0.5 unit was observed in optimal pH after immobilization (pH 6.5 to 7). Perhaps the most striking results are the kinetic parameters of the immobilized enzyme; while the Michaelis constant (K(m)) value increased almost eight times compared to the free enzyme, the maximum enzyme velocity (V(max)) remained almost constant.


Subject(s)
Enzymes, Immobilized/chemistry , beta-Galactosidase/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biotechnology , Enzyme Stability , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Kinetics , Kluyveromyces/enzymology , Membranes, Artificial , Temperature , beta-Galactosidase/metabolism
18.
Water Sci Technol ; 63(10): 2457-61, 2011.
Article in English | MEDLINE | ID: mdl-21977673

ABSTRACT

Microbial fuel cells (MFCs) are novel bioelectrochemical devices for spontaneous conversion of biomass into electricity through the metabolic activity of the bacteria. Microbial production of electricity may become an important source of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. However, the materials used in these devices are still not economic and researchers use different materials as cathode and anode in MFCs. This results in variable performance which is difficult to compare. We tested several commercially available materials for their suitability as anode in an acetate fed MFC. Besides, a novel non-platinized activated carbon (AC) based, gas porous air cathode was also tested. Both the anode and cathode were tested in a half cell configuration. Carbon cloth, graphite cloth and dynamically stable anode (DSA) served as ideal anode material with carbon cloth and graphite mesh reaching the open circuit voltage (OCV) of acetate oxidation (-500 mV vs. Ag/AgCl). The effect of increasing concentration of acetate on anode OCV was also investigated and results showed that on increasing the acetate concentration from 10 mM to 40 mM has no adverse impact on the anodic activity towards electrochemical oxidation of acetate. The AC cathode showed stable current (-1.2 mA/cm2) over a period of 100 days.


Subject(s)
Bioelectric Energy Sources , Acetates , Biological Oxygen Demand Analysis , Electrodes , Materials Testing
19.
Water Res ; 45(3): 1443-53, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21112605

ABSTRACT

The application of fixed operational protocols and settings for membrane bioreactors (MBR) often leads to suboptimal filtration conditions due to the dynamic nature of mixed liquor characteristics. With regard to process optimization and energy savings, the potential benefits of a dynamic control system, enabling to adapt fouling control actions (ACS outputs) in an automated way to the actual mixed liquor fouling propensity, are thus obvious. In this paper, the pilot-scale validation of such an advanced control system (ACS) is elaborated. A specific on-line fouling measurement method, the MBR-VFM (VITO Fouling Measurement), was used for the evaluation of the mixed liquor's reversible fouling propensity, which was used as a primary ACS input parameter. A first series of tests with a gradual increase in complexity of the selected input and output parameters indicated the functionality of the ACS and demonstrated a substantial reduction of aeration, however sometimes at the expense of a higher fouling rate. The ACS was further fine-tuned and subsequently tested for a longer period under more dynamic operating conditions. A significant correlation was found between the reversible fouling potential measured by the MBR-VFM and the on-line permeability, indicating that the MBR-VFM is a suitable ACS input. Furthermore, an average 22% reduction in aeration flow to the membranes could be achieved without any obvious negative effect on filtration performance. This indicates that this approach is promising to optimize energy consumption in MBRs.


Subject(s)
Biofouling , Bioreactors/microbiology , Membranes, Artificial
20.
Water Res ; 45(3): 1129-38, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21112606

ABSTRACT

The total, ammonia-oxidizing, and denitrifying Bacteria in a full-scale membrane bioreactor (MBR) were evaluated monthly for over one year. Microbial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) and clone library analysis of the 16S rRNA and ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes. The community fingerprints obtained were compared to those from a conventional activated sludge (CAS) process running in parallel treating the same domestic wastewater. Distinct DGGE profiles for all three molecular markers were observed between the two treatment systems, indicating the selection of specific bacterial populations by the contrasting environmental and operational conditions. Comparative 16S rRNA sequencing indicated a diverse bacterial community in the MBR, with phylotypes from the α- and ß-Proteobacteria and Bacteroidetes dominating the gene library. The vast majority of sequences retrieved were not closely related to classified organisms or displayed relatively low levels of similarity with any known 16S rRNA gene sequences and thus represent organisms that constitute new taxa. Similarly, the majority of the recovered nosZ sequences were novel and only moderately related to known denitrifiers from the α- and ß-Proteobacteria. In contrast, analysis of the amoA gene showed a remarkably simple ammonia-oxidizing community with the detected members almost exclusively affiliated with the Nitrosomonas oligotropha lineage. Major shifts in total bacteria and denitrifying community were detected and these were associated with change in the external carbon added for denitrification enhancement. In spite of this, the MBR was able to maintain a stable process performance during that period. These results significantly expand our knowledge of the biodiversity and population dynamics of microorganisms in MBRs for wastewater treatment.


Subject(s)
Bacteria/genetics , Biodiversity , Bioreactors/microbiology , Membranes, Artificial , Ammonia/metabolism , Bacteria/classification , Denitrification , Phylogeny , Population Dynamics , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...