Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(8): 2495-2504, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37026789

ABSTRACT

The globally expanding threat of antibiotic resistance calls for the development of new strategies for abating Gram-negative bacterial infections. The use of extracorporeal blood cleansing devices with affinity sorbents to selectively capture bacterial lipopolysaccharide (LPS), which is the major constituent of Gram-negative bacterial outer membranes and the responsible agent for eliciting an exacerbated innate immune response in the host during infection, has received outstanding interest. For that purpose, molecules that bind tightly to LPS are required to functionalize the affinity sorbents. Particularly, anti-LPS factors (ALFs) are promising LPS-sequestrating molecules. Hence, in this work, molecular dynamics (MD) simulations are used to investigate the interaction mechanism and binding pose of the ALF isoform 3 from Penaeus monodon (ALFPm3), which is referred to as "AL3" for the sake of simplicity, and lipid A (LA, the component of LPS that represents its endotoxic principle). We concluded that hydrophobic interactions are responsible for AL3-LA binding and that LA binds to AL3 within the protein cavity, where it buries its aliphatic tails, whereas the negatively charged phosphate groups are exposed to the medium. AL3 residues that are key for its interaction with LA were identified, and their conservation in other ALFs (specifically Lys39 and Tyr49) was also analyzed. Additionally, based on the MD-derived results, we provide a picture of the possible AL3-LA interaction mechanism. Finally, an in vitro validation of the in silico predictions was performed. Overall, the insights gained from this work can guide the design of novel therapeutics for treating sepsis, since they may be significantly valuable for designing LPS-sequestrating molecules that could functionalize affinity sorbents to be used for extracorporeal blood detoxification.


Subject(s)
Lipid A , Penaeidae , Animals , Lipopolysaccharides/pharmacology , Penaeidae/metabolism , Penaeidae/microbiology , Molecular Dynamics Simulation , Protein Isoforms/metabolism
2.
J Comput Chem ; 41(32): 2740-2749, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33026106

ABSTRACT

Molecular simulations of nanoscale systems invariably involve assumptions and approximations to describe the electrostatic interactions, which are long-ranged in nature. One approach is the use of cutoff schemes with a reaction-field contribution to account for the medium outside the cutoff scheme. Recent reports show that macroscopic properties may depend on the exact choice of cutoff schemes in modern day simulations. In this work, a systematic analysis of the effects of different cutoff schemes was performed using a set of 52 proteins. We find no statistically significant differences between using a twin-range or a single-range cutoff scheme. Applying the cutoff based on charge groups or based on atomic positions, does lead to significant differences, which is traced to the cutoff noise for energies and forces. While group-based cutoff schemes show increased cutoff noise in the potential energy, applying an atomistic cutoff leads to artificial structure in the solvent at the cutoff distance. Carefully setting the temperature control, or using an atomistic cutoff for the solute and a group-based cutoff for the solvent significantly reduces the effects of the cutoff noise, without introducing structure in the solvent. This study aims to deepen the understanding of the implications different cutoffs have on molecular dynamics simulations.


Subject(s)
Proteins/chemistry , Molecular Conformation , Molecular Dynamics Simulation , Solvents/chemistry , Static Electricity , Temperature , Thermodynamics
3.
J Chem Theory Comput ; 16(10): 5985-5990, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32813524

ABSTRACT

Recently, concerns have been voiced regarding the validity of the GROMOS force fields, being parametrized using a twin-range cutoff scheme, in which longer ranged nonbonded forces and energies are updated less frequently than shorter ranged ones. Here we demonstrate that the influence of such a scheme on the thermodynamic, structural, and dynamic properties used in the parametrization of the GROMOS force fields is minor. We find root-mean-square differences of maximally 0.5 kJ/mol for the solvation free energy and heat of vaporization and of maximally 0.4% for the density. Slightly larger differences are observed when switching from a group-based to an atom-based cutoff scheme. In cases where the twin-range cutoff scheme does result in minor differences compared to a single-range cutoff these are well within the deviation from the experimentally measured values.

4.
Chem Res Toxicol ; 33(9): 2298-2309, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32786539

ABSTRACT

The formation and repair of N2-(trans-isosafrol-3'-yl)-2'-deoxyguanosine (S-3'-N2-dG) DNA adduct derived from the spice and herbal alkenylbenzene constituent safrole were investigated. DNA adduct formation and repair were studied in vitro and using molecular dynamics (MD) simulations. DNA adduct formation was quantified using liquid chromatography-mass spectrometry (LCMS) in wild type and NER (nucleotide excision repair) deficient CHO cells and also in HepaRG cells and primary rat hepatocytes after different periods of repair following exposure to safrole or 1'-hydroxysafrole (1'-OH safrole). The slower repair of the DNA adducts found in NER deficient cells compared to that in CHO wild type cells indicates a role for NER in repair of S-3'-N2-dG DNA adducts. However, DNA repair in liver cell models appeared to be limited, with over 90% of the adducts remaining even after 24 or 48 h recovery. In our further studies, MD simulations indicated that S-3'-N2-dG adduct formation causes only subtle changes in the DNA structure, potentially explaining inefficient activation of NER. Inefficiency of NER mediated repair of S-3'-N2-dG adducts points at persistence and potential bioaccumulation of safrole DNA adducts upon daily dietary exposure.


Subject(s)
DNA Adducts/chemistry , Molecular Dynamics Simulation , Safrole/chemistry , Animals , Cells, Cultured , DNA Repair , Humans , Rats
5.
Arch Toxicol ; 94(4): 1349-1365, 2020 04.
Article in English | MEDLINE | ID: mdl-32185416

ABSTRACT

Estragole, naturally occurring in a variety of herbs and spices, can form DNA adducts after bioactivation. Estragole DNA adduct formation and repair was studied in in vitro liver cell models, and a molecular dynamics simulation was used to investigate the conformation dependent (in)efficiency of N2-(trans-isoestragol-3'-yl)-2'-deoxyguanosine (E-3'-N2-dG) DNA adduct repair. HepG2, HepaRG cells, primary rat hepatocytes and CHO cells (including CHO wild-type and three NER-deficient mutants) were exposed to 50 µM estragole or 1'-hydroxyestragole and DNA adduct formation was quantified by LC-MS immediately following exposure and after a period of repair. Results obtained from CHO cell lines indicated that NER plays a role in repair of E-3'-N2-dG adducts, however, with limited efficiency since in the CHO wt cells 80% DNA adducts remained upon 24 h repair. Inefficiency of DNA repair was also found in HepaRG cells and primary rat hepatocytes. Changes in DNA structure resulting from E-3'-N2-dG adduct formation were investigated by molecular dynamics simulations. Results from molecular dynamics simulations revealed that conformational changes in double-stranded DNA by E-3'-N2-dG adduct formation are small, providing a possible explanation for the restrained repair, which may require larger distortions in the DNA structure. NER-mediated enzymatic repair of E-3'-N2-dG DNA adducts upon exposure to estragole will be limited, providing opportunities for accumulation of damage upon repeated daily exposure. The inability of this enzymatic repair is likely due to a limited distortion of the DNA double-stranded helix resulting in inefficient activation of nucleotide excision repair.


Subject(s)
Anisoles/toxicity , Carcinogens/toxicity , Flavoring Agents/toxicity , Allylbenzene Derivatives , Animals , Chromatography, Liquid , Cricetinae , Cricetulus , DNA , DNA Adducts , DNA Repair , Deoxyguanosine , Hepatocytes , Mass Spectrometry , Molecular Dynamics Simulation , Rats , Toxicity Tests
6.
J Chem Inf Model ; 60(1): 279-288, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31873012

ABSTRACT

Molecular dynamics simulations of proteins depend critically on the underlying force field, which may be parameterized against experimental data or high-quality quantum calculations. Here, we develop search algorithms based on Monte Carlo and steepest descent calculations to optimize the backbone dihedral angle parameters from a single reference simulation. We apply these tools to improve the agreement between simulations of single, capped amino acids and experimentally determined J values and secondary structure propensities of these molecules. The parameters are further refined based on simulations of a set of seven proteins and finally validated in simulations on a large set of 52 protein structures. Improvements in the dihedral angle distributions are observed, and structural propensities of the proteins are reproduced very well. Overall, the GROMOS 54A8_bb parameter set forms an improvement to previous parameter sets, both for small molecules and for protein simulations.


Subject(s)
Proteins/chemistry , Algorithms , Amino Acids/chemistry , Crystallography, X-Ray , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Reproducibility of Results
7.
Appl Microbiol Biotechnol ; 103(18): 7505-7518, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31350616

ABSTRACT

The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody's germline family, highlighting the fact that mAbs should be treated individually.


Subject(s)
Antibodies, Monoclonal/genetics , Germ-Line Mutation , Recombinant Proteins/genetics , Temperature , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , CHO Cells , Cricetinae , Cricetulus , Mutation , Protein Stability , Recombinant Proteins/immunology
8.
Chemphyschem ; 20(11): 1527-1537, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30920077

ABSTRACT

A powerful conformational searching and enhanced sampling simulation method, and unbiased molecular dynamics simulations have been used along with NMR spectroscopic observables to provide a detailed structural view of O-glycosylation. For four model systems, the force-field parameters can accurately predict experimental NMR observables (J couplings and NOE's). This enables us to derive conclusions based on the generated ensembles, in which O-glycosylation affects the peptide backbone conformation by forcing it towards to an extended conformation. An exception is described for ß-GalNAc-Thr where the α content is increased and stabilized via hydrogen bonding between the sugar and the peptide backbone, which was not observed in the rest of the studied systems. These observations might offer an explanation for the evolutionary preference of α-linked GalNAc glycosylation instead of a ß link.


Subject(s)
Glycopeptides/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Glycosylation , Hydrogen Bonding , Protein Conformation , Thermodynamics
9.
J Chem Theory Comput ; 14(11): 5823-5833, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30354115

ABSTRACT

With the recent increase in computing power, the molecular modeling community is now more focused on improving the accuracy and overall quality of biomolecular simulations. For the available simulation packages, force fields, and all other associated methods used, this relates to how well they describe the conformational space and thermodynamic properties of a biomolecular system. The parameter sets of GROMOS force fields have been parametrized and validated with the reaction field (RF) method using charge groups and a twin-range cutoff scheme (0.8/1.4 nm). However, the most recent versions of GROMACS (since v.2016) discontinued the support for charge groups. To take full advantage of the newer and faster versions of this software package with GROMOS 54A7 and RF, we need to evaluate the impact of using a single cutoff scheme (vs twin-range) and of using the Verlet list update method (which is atomistic) compared to the group-based cutoff scheme. Our results show that the GROMOS 54A7 force field seems consistent with a single cutoff, since the resulting conformation and protonation ensembles were indistinguishable. The GROMOS parametrization procedure was also reproduced using an atomistic cutoff scheme, and we have observed that the hydration free energy values of small amino acid side-chain analogues were similar to the ones obtained with the group-based protocol. We do observe a small impact of the atomistic cutoff scheme in the conformational space of the model systems studied (G1-PAMAM and DMPC). However, since the structural properties of these systems are well converged for the cutoff range used (1.4-2.0 nm), unlike with the group-based cutoff schemes, we are confident that the atomistic cutoff can be adopted with RF for MD and constant-pH MD biomolecular simulations using the GROMOS 54A7 force field.

SELECTION OF CITATIONS
SEARCH DETAIL
...