Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 48(1): 316-331, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31777924

ABSTRACT

The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int- transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int- transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.


Subject(s)
Cellular Reprogramming , DNA Transposable Elements , Induced Pluripotent Stem Cells/metabolism , Transposases/genetics , Amino Acid Substitution , Animals , Epistasis, Genetic , Genetic Engineering/methods , HeLa Cells , Hep G2 Cells , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Mutation , Transposases/metabolism
2.
Sci Rep ; 9(1): 1171, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718656

ABSTRACT

Sleeping Beauty (SB) is a synthetic Tc1/mariner transposon that is widely used for genetic engineering in vertebrates, including humans. Its sequence was derived from a consensus of sequences found in fish species including the Atlantic salmon (Salmo salar). One of the functional components of SB, the transposase enzyme, has been subject to extensive mutagenesis yielding hyperactive protein variants for advanced applications. The second functional component, the transposon inverted terminal repeats (ITRs), has so far not been extensively modified, mainly due to a lack of natural sequence information. Importantly, as genome sequences become available, they can provide a rich source of information for a refined molecular definition of the functional components of these transposons. Here we have mined the Salmo salar genome for a comprehensive set of transposon sequences that were used to build a refined consensus sequence. We synthetically produced the new consensus ITR sequences and used them to build a new transposon, the performance of which has been tested in cell-based transposition assays. The consensus sequence did not support enhanced transposition, suggesting alternative mechanisms responsible for the preferential amplification of these sequence variants in the salmon genome.


Subject(s)
DNA Transposable Elements , Salmo salar/genetics , Terminal Repeat Sequences , Animals , Computational Biology , Genetic Engineering/methods , Humans , Molecular Biology/methods , Recombination, Genetic
3.
Nat Commun ; 7: 10716, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26931494

ABSTRACT

Helitron transposons capture and mobilize gene fragments in eukaryotes, but experimental evidence for their transposition is lacking in the absence of an isolated active element. Here we reconstruct Helraiser, an ancient element from the bat genome, and use this transposon as an experimental tool to unravel the mechanism of Helitron transposition. A hairpin close to the 3'-end of the transposon functions as a transposition terminator. However, the 3'-end can be bypassed by the transposase, resulting in transduction of flanking sequences to new genomic locations. Helraiser transposition generates covalently closed circular intermediates, suggestive of a replicative transposition mechanism, which provides a powerful means to disseminate captured transcriptional regulatory signals across the genome. Indeed, we document the generation of novel transcripts by Helitron promoter capture both experimentally and by transcriptome analysis in bats. Our results provide mechanistic insight into Helitron transposition, and its impact on diversification of gene function by genome shuffling.


Subject(s)
Chiroptera/genetics , DNA Transposable Elements/genetics , Genetic Variation , Genome , Animals , HeLa Cells , Humans
4.
Cancer Res ; 70(1): 357-66, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20028863

ABSTRACT

Adaptive responses to hypoxia in tumors are transcriptionally regulated by the hypoxia inducible factors (HIF-1alpha/HIF-2alpha), which are tightly controlled by the HIF-prolyl hydroxylases (PHD). Hypoxia induces expression of the PHD2 and PHD3 proteins in tumors but the pathobiological significance of these events is uncertain. Here, we show that PHD2 and PHD3 induction acts within a negative feedback loop to limit the hypoxic HIF response. In glioblastomas, PHD2 and PHD3 are hypoxia-inducible in vitro and expressed in hypoxic areas of tumors in vivo. Comparison with other PHDs revealed distinct cytoplasmatic and nuclear localization patterns of PHD2 and PHD3. Gain and loss of function experiments defined PHD2 and PHD3 as HIF target genes that remained operative even at low oxygen concentrations. We found that increased PHD levels could compensate for reduced oxygen availability to regulate the HIF response. This negative feedback loop protected tumor cells against hypoxia-induced cell death, functionally implicating this pathway in the control of the tumor-suppressive components of the HIF system in glioblastoma. Moreover, PHD inhibition facilitated cell death induction by staurosporine or tumor necrosis factor-related apoptosis-inducing ligand, hinting at a more general protective role of PHD in the regulation of cell viability. In summary, our findings recognize the PHD/HIF regulatory axis as a novel therapeutic target to disable a tumor's ability to adjust to hypoxic conditions and control cell survival, helping to potentially overcome therapeutic cell death resistance in glioblastomas.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Dioxygenases/metabolism , Glioma/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Procollagen-Proline Dioxygenase/metabolism , Blotting, Western , Cell Hypoxia/physiology , Cell Line, Tumor , Feedback, Physiological/physiology , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases , Immunohistochemistry , In Situ Hybridization, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...