Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38136813

ABSTRACT

Matrix metalloproteinase-9 is increased in renal tissue in human kidney disease, but its role as a biomarker for kidney disease has not been fully evaluated yet. The aim of this study was to evaluate serum MMP-9 (sMMP-9) and urinary MMP-9 (uMMP-9) concentrations in dehydrated horses. Dehydrated horses were prospectively included. Blood and urinary samples were taken at admission, and after 12, 24, and 48 h (t0, t12, t24, t48), an anti-equine MMP-9 sandwich ELISA was used. Four healthy horses served as the controls. Serum creatinine, urea, symmetric dimethylarginine (SDMA), urine-specific gravity, urinary protein concentration, fractional sodium excretion, and urinary gamma-glutamyl transferase/creatinine ratio (uGGT/Cr) were measured. Statistical analysis included a repeated measures ANOVA and mixed linear regression model. Overall, 40 dehydrated horses were included (mild dehydration 13/40, moderate 16/40, severe 11/40). Acute kidney injury was found in 1/40 horses; 7/40 horses showed elevated serum creatinine, 11/40 horses elevated serum SDMA, and 5/28 elevated uGGT/Cr at presentation. In dehydrated horses, sMMP-9 concentrations were significantly higher on t0 (median: 589 ng/mL, range: 172-3597 ng/mL) compared to t12 (340 ng/mL, 132-1213 ng/mL), t24 (308 ng/mL, 162-1048 ng/mL), and t48 (258 ng/mL, 130-744 ng/mL). In healthy horses, sMMP-9 (239 ng/mL, 142-508 ng/mL) showed no differences over time or compared to patients. uMMP-9 and uMMP-9/creatinine did not differ over time or to the controls. No differences were found between dehydration groups. Urinary casts (p = 0.001; estimate = 135) and uGGT/Cr (p = 0.03; estimate = 6.5) correlated with sMMP-9. Serum urea was associated with uMMP-9/Cr (p = 0.01, estimate 0.9). In conclusion, sMMP-9 was elevated at arrival in dehydrated patients compared to later measurements. Correlations to uGGT/Cr and urinary casts need further evaluation.

2.
Sci Adv ; 8(18): eabm1232, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35507650

ABSTRACT

In response to three highly conserved neuropeptides, neuropeptide Y (NPY), peptide YY, and pancreatic polypeptide (PP), four G protein-coupled receptors mediate multiple essential physiological processes, such as food intake, vasoconstriction, sedation, and memory retention. Here, we report the structures of the human Y1, Y2, and Y4 receptors in complex with NPY or PP, and the Gi1 protein. These structures reveal distinct binding poses of the peptide upon coupling to different receptors, reflecting the importance of the conformational plasticity of the peptide in recognizing the NPY receptors. The N terminus of the peptide forms extensive interactions with the Y1 receptor, but not with the Y2 and Y4 receptors. Supported by mutagenesis and functional studies, subtype-specific interactions between the receptors and peptides were further observed. These findings provide insight into key factors that govern NPY signal recognition and transduction, and would enable development of selective drugs.

3.
Front Mol Biosci ; 8: 750528, 2021.
Article in English | MEDLINE | ID: mdl-34790700

ABSTRACT

Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...