Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(19): 191102, 2012 May 11.
Article in English | MEDLINE | ID: mdl-23003022

ABSTRACT

The motion of a charged particle is influenced by the self-force arising from the particle's interaction with its own field. In a curved spacetime, this self-force depends on the entire past history of the particle and is difficult to evaluate. As a result, all existing self-force evaluations in curved spacetime are for particles moving along a fixed trajectory. Here, for the first time, we overcome this long-standing limitation and present fully self-consistent orbits and waveforms of a scalar charged particle around a Schwarzschild black hole.

2.
Phys Rev Lett ; 99(4): 041102, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678346

ABSTRACT

The final evolution of a binary-black-hole system gives rise to a recoil velocity if an asymmetry is present in the emitted gravitational radiation. Measurements of this effect for nonspinning binaries with unequal masses have pointed out that kick velocities approximately 175 km/s can be reached for a mass ratio approximately 0.36. However, a larger recoil can be obtained for equal-mass binaries if the asymmetry is provided by the spins. Using two independent methods we show that the merger of such binaries yields velocities as large as approximately 440 km/s for black holes having unequal spins that are antialigned and parallel to the orbital angular momentum.

3.
Phys Rev Lett ; 96(12): 121101, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16605891

ABSTRACT

We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit. We illustrate these results using an initial data set recently evolved by Brügmann et al. [Phys. Rev. Lett. 92, 211101 (2004)10.1103/PhysRevLett.92.211101]. For our highest resolution and most accurate gauge, we estimate the duration of this data set's last orbit to be approximately 59MADM.

SELECTION OF CITATIONS
SEARCH DETAIL
...