Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 133(20): 7824-36, 2011 May 25.
Article in English | MEDLINE | ID: mdl-21534528

ABSTRACT

Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp(•)). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH(•)) results in the formation of FADH(-) and (306)Trp(•). Charge recombination between these two intermediates requires the uptake of a proton by (306)Trp(•). The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ≤ 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed 'inverse' deuterium isotope effect at pH < 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase/metabolism , Escherichia coli/enzymology , Flavin-Adenine Dinucleotide/metabolism , Tryptophan/metabolism , Electron Transport , Hydrogen-Ion Concentration , Kinetics , Photochemistry , Protons
2.
J Phys Chem A ; 114(40): 10897-905, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20860352

ABSTRACT

The aromatic amino acid tryptophan plays an important role in protein electron-transfer and in enzyme catalysis. Tryptophan is also used as a probe of its local protein environment and of dynamic changes in this environment. Raman spectroscopy of tryptophan has been an important tool to monitor tryptophan, its radicals, and its protein environment. The proper interpretation of the Raman spectra requires not only the correct assignment of Raman bands to vibrational normal modes but also the correct identification of the Raman bands in the spectrum. A significant amount of experimental and computational work has been devoted to this problem, but inconsistencies still persist. In this work, the Raman spectra of indole, 3-methylindole (3MI), tryptophan, and several of their isotopomers have been measured to determine the isotope shifts of the Raman bands. Density functional theory calculations with the B3LYP functional and the 6-311+G(d,p) basis set have been performed on indole, 3MI, 3-ethylindole (3EI), and several of their isotopomers to predict isotope shifts of the vibrational normal modes. Comparison of the observed and predicted isotope shifts results in a consistent assignment of Raman bands to vibrational normal modes that can be used for both assignment and identification of the Raman bands. For correct assignments, it is important to determine force field scaling factors for each molecule separately, and scaling factors of 0.9824, 0.9843, and 0.9857 are determined for indole, 3MI, and 3EI, respectively. It is also important to use more than one parameter to assign vibrational normal modes to Raman bands, for example, the inclusion of isotope shifts other than those obtained from H/D-exchange. Finally, the results indicate that the Fermi doublet of indole may consist of just two fundamentals, whereas one fundamental and one combination band are identified for the Fermi resonance that gives rise to the doublet in 3MI and tryptophan.


Subject(s)
Indoles/chemistry , Skatole/chemistry , Spectrum Analysis, Raman/methods , Tryptophan/chemistry , Carbon Isotopes/chemistry , Computer Simulation , Deuterium/chemistry , Models, Chemical , Molecular Structure , Nitrogen Isotopes/chemistry , Skatole/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...