Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 6(4): 728-39, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23149662

ABSTRACT

Studies examining the role of programmed death 1 (PD-1) ligand 2 (PD-L2)/PD-1 in asthma have yielded conflicting results. To clarify its role, we examined the PD-L2 expression in biopsies from human asthmatics and the lungs of aeroallergen-treated mice. PD-L2 expression in bronchial biopsies correlated with the severity of asthma. In mice, allergen exposure increased PD-L2 expression on pulmonary myeloid dendritic cells (DCs), and PD-L2 blockade diminished allergen-induced airway hyperresponsiveness (AHR). By contrast, PD-1 blockade had no impact, suggesting that PD-L2 promotes AHR in a PD-1-independent manner. Decreased AHR was associated with enhanced serum interleukin (IL)-12 p40, and in vitro stimulation of DCs with allergen and PD-L2-Fc reduced IL-12 p70 production, suggesting that PD-L2 inhibits allergen-driven IL-12 production. In our model, IL-12 did not diminish T helper type 2 responses but rather directly antagonized IL-13-inducible gene expression, highlighting a novel role for IL-12 in regulation of IL-13 signaling. Thus, allergen-driven enhancement of PD-L2 signaling through a PD-1-independent mechanism limits IL-12 secretion, exacerbating AHR.


Subject(s)
Asthma/immunology , Asthma/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-12/biosynthesis , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Allergens/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Asthma/drug therapy , Asthma/genetics , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/metabolism , Gene Expression Regulation/drug effects , Immunoglobulin G/immunology , Interleukin-12 Subunit p40/metabolism , Interleukin-13/metabolism , Interleukin-13/pharmacology , Male , Mice , Mucus/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Programmed Cell Death 1 Ligand 2 Protein/agonists , Programmed Cell Death 1 Ligand 2 Protein/antagonists & inhibitors , Signal Transduction/drug effects
2.
Genes Immun ; 7(1): 27-35, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16355111

ABSTRACT

Proinflammatory and immunoregulatory products from C3 play a major role in phagocytosis, respiratory burst, and airways inflammation. C3 is critical in adaptive immunity; studies in mice deficient in C3 demonstrate that features of asthma are significantly attenuated in the absence of C3. To test the hypothesis that the C3 gene on chromosome 19p13.3-p13.2 contains variants associated with asthma and related phenotypes, we genotyped 25 single nucleotide polymorphism (SNP) markers distributed at intervals of approximately 1.9 kb within the C3 gene in 852 African Caribbean subjects from 125 nuclear and extended pedigrees. We used the multiallelic test in the family-based association test program to examine sliding windows comprised of 2-6 SNPs. A five-SNP window between markers rs10402876 and rs366510 provided strongest evidence for linkage in the presence of linkage disequilibrium for asthma, high log[total IgE], and high log[IL-13]/[log[IFN-gamma] in terms of global P-values (P = 0.00027, 0.00013, and 0.003, respectively). A three-SNP haplotype GGC for the first three of these markers showed best overall significance for the three phenotypes (P = 0.003, 0.007, 0.018, respectively) considering haplotype-specific tests. Taken together, these results implicate the C3 gene as a priority candidate controlling risk for asthma and allergic disease in this population of African descent.


Subject(s)
Asthma/genetics , Black People , Complement C3/genetics , Genetic Predisposition to Disease , Barbados/ethnology , Black People/ethnology , Caribbean Region/ethnology , Genetic Variation , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide
3.
J Biol Chem ; 276(42): 38542-8, 2001 Oct 19.
Article in English | MEDLINE | ID: mdl-11504713

ABSTRACT

Pulmonary surfactant isolated from gene-targeted surfactant protein A null mice (SP-A(-/-)) is deficient in the surfactant aggregate tubular myelin and has surface tension-lowering activity that is easily inhibited by serum proteins in vitro. To further elucidate the role of SP-A and its collagen-like region in surfactant function, we used the human SP-C promoter to drive expression of rat SP-A (rSPA) or SP-A containing a deletion of the collagen-like domain (DeltaG8-P80) in the Clara cells and alveolar type II cells of SP-A(-/-) mice. The level of the SP-A in the alveolar wash of the SP-A(-/-,rSP-A) and SP-A(-/-,DeltaG8-P80) mice was 6.1-and 1.3-fold higher, respectively, than in the wild type controls. Tissue levels of saturated phosphatidylcholine were slightly reduced in the SP-A(-/-,rSP-A) mice compared with SP-A(-/-) littermates. Tubular myelin was present in the large surfactant aggregates isolated from the SP-A(-/-,rSP-A) lines but not in the SP-A(-/-,DeltaG8-P80) mice or SP-A(-/-) controls. The equilibrium and minimum surface tensions of surfactant from the SP-A(-/-,rSP-A) mice were similar to SP-A(-/-) controls, but both were markedly elevated in the SP-A(-/-,DeltaG8-P80) mice. There was no defect in the surface tension-lowering activity of surfactant from SP-A(+/+,DeltaG8-P80) mice, indicating that the inhibitory effect of DeltaG8-P80 on surface activity can be overcome by wild type levels of mouse SP-A. The surface activity of surfactant isolated from the SP-A(-/-,rSP-A) but not the SP-A(-/-,DeltaG8-P80) mice was more resistant than SP-A(-/-) littermate control animals to inhibition by serum proteins in vitro. Pressure volume relationships of lungs from the SP-A(-/-), SP-A(-/-,rSP-A), and SP-A(-/-,DeltaG8-P80) lines were very similar. These data indicate that expression of SP-A in the pulmonary epithelium of SP-A(-/-) animals restores tubular myelin formation and resistance of isolated surfactant to protein inhibition by a mechanism that is dependent on the collagen-like region.


Subject(s)
Collagen/chemistry , Lung/cytology , Proteolipids/chemistry , Proteolipids/genetics , Pulmonary Surfactants/chemistry , Pulmonary Surfactants/genetics , Surface-Active Agents/chemistry , Animals , Blotting, Southern , Gene Deletion , Humans , Immunoblotting , Lung/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Electron , Myelin Sheath/metabolism , Phosphatidylcholines/metabolism , Promoter Regions, Genetic , Protein Structure, Tertiary , Proteolipids/physiology , Pulmonary Alveoli/metabolism , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Proteins , Pulmonary Surfactants/physiology , Rats , Surface Tension , Surface-Active Agents/metabolism , Time Factors , Transgenes
4.
Endocrinology ; 142(9): 3800-8, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11517156

ABSTRACT

Androgen deficiency in males leads to an increase in osteoclastic bone resorption and a progressive decrease in bone mineral density. In the current studies, we examined the ability of 5 alpha-dihydrotestosterone to suppress osteoclast formation induced by receptor activator of NF-kB ligand (RANKL) and macrophage-colony stimulating factor in vitro. 5 alpha-Dihydrotestosterone suppressed the differentiation of bone marrow monocytes into osteoclasts from both sham-operated and orchidectomized mice. Androgen deficiency also led to an increase in the number of hematopoietic precursors capable of forming osteoclasts and increased the relative responsiveness of these cells to androgens in vitro. Interestingly, E2 was as effective as 5 alpha-dihydrotestosterone in suppressing osteoclast formation in bone marrow monocytes from both sham and orchidectomized mice. As with bone marrow monocytes, 5 alpha-dihydrotestosterone also suppressed RANKL-induced osteoclast formation in the monocyte-macrophagic cell line RAW264.7. In RAW264.7 cells, androgens appear to block RANKL-induced osteoclast formation through selective regulation of c-JUN: Accordingly, 5 alpha-dihydrotestosterone suppressed RANKL-induced c-Jun N-terminal kinase activation and reduced c-Jun expression levels. These effects resulted in a reduction in RANKL-induced activator protein-1 DNA binding activity and a corresponding suppression in activator protein-1-mediated transcriptional activation. These studies indicate that both E and androgens can suppress osteoclast formation via a direct, stromal cell-independent action on osteoclast precursors to block key transcription factors such as c-Jun essential for osteoclast differentiation.


Subject(s)
Androgens/physiology , Carrier Proteins/pharmacology , Macrophage Colony-Stimulating Factor/pharmacology , Membrane Glycoproteins/pharmacology , Osteoclasts/cytology , Androgens/deficiency , Androgens/pharmacology , Animals , Bone Marrow Cells/cytology , Cell Division/drug effects , Cell Division/physiology , Cells, Cultured , Estradiol/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 8 , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Monocytes/cytology , Monocytes/metabolism , NF-kappa B/metabolism , Orchiectomy , Proto-Oncogene Proteins c-jun/antagonists & inhibitors , RANK Ligand , RNA, Messenger/metabolism , Receptor Activator of Nuclear Factor-kappa B , Receptors, Androgen/genetics , Stem Cells/cytology , p38 Mitogen-Activated Protein Kinases
5.
Proc Natl Acad Sci U S A ; 98(5): 2443-8, 2001 Feb 27.
Article in English | MEDLINE | ID: mdl-11226258

ABSTRACT

IL-4 is a pleiotropic immune cytokine secreted by activated T(H)2 cells that inhibits bone resorption both in vitro and in vivo. The cellular targets of IL-4 action as well as its intracellular mechanism of action remain to be determined. We show here that IL-4 inhibits receptor activator of NF-kappaB ligand-induced osteoclast differentiation through an action on osteoclast precursors that is independent of stromal cells. Interestingly, this inhibitory effect can be mimicked by both natural as well as synthetic peroxisome proliferator-activated receptor gamma1 (PPARgamma1) ligands and can be blocked by the irreversible PPARgamma antagonist GW 9662. These findings suggest that the actions of IL-4 on osteoclast differentiation are mediated by PPARgamma1, an interpretation strengthened by the observation that IL-4 can activate a PPARgamma1-sensitive luciferase reporter gene in RAW264.7 cells. We also show that inhibitors of enzymes such as 12/15-lipoxygenase and the cyclooxygenases that produce known PPARgamma1 ligands do not abrogate the IL-4 effect. These findings, together with the observation that bone marrow cells from 12/15-lipoxygenase-deficient mice retain sensitivity to IL-4, suggest that the cytokine may induce novel PPARgamma1 ligands. Our results reveal that PPARgamma1 plays an important role in the suppression of osteoclast formation by IL-4 and may explain the beneficial effects of the thiazolidinedione class of PPARgamma1 ligands on bone loss in diabetic patients.


Subject(s)
Interleukin-4/physiology , Osteoclasts/cytology , Receptors, Cytoplasmic and Nuclear/physiology , Transcription Factors/physiology , Animals , Carrier Proteins/pharmacology , Female , Genes, Reporter , Luciferases/genetics , Membrane Glycoproteins/pharmacology , Mice , Mice, Knockout , NF-kappa B/metabolism , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Transcription Factors/agonists , Transcription Factors/antagonists & inhibitors
6.
Biochemistry ; 39(33): 10189-95, 2000 Aug 22.
Article in English | MEDLINE | ID: mdl-10956008

ABSTRACT

A single gene for rat surfactant protein A (SP-A) encodes two isoforms that are distinguished by an isoleucine-lysine-cysteine (IKC) N-terminal extension (SP-A and IKC-SP-A). Available evidence suggests that the variants are generated by alternative signal peptidase cleavage of the nascent polypeptide at a primary site (Cys(-)(1)-Asn(1)) and a secondary site (Gly(-)(4)-Ile(-)(3)). In this study, we used site-directed mutagenesis and heterologous expression in vitro and in insect cells to the examine mechanisms that may lead to alternative signal peptidase cleavage including alternative translation initiation at two in-frame AUGs (Met(-)(30) and Met(-)(20)), a suboptimal context for hydrolysis at the primary cleavage site, or cotranslational protein modifications that expose an otherwise cryptic secondary cleavage site. In vitro translation of a rat cDNA for SP-A resulted in both 28 and 29 kDa primary translation products on SDS-PAGE analysis, while translation of cDNAs encoding Met-30Ala and Met-20Ala mutations resulted in only the single 28 and 29 kDa molecular mass species, respectively. These data are consistent with translation initiation at both Met(-)(30) and Met(-)(20) during in vitro synthesis of SP-A. The Met-30Ala mutation reduced expression of the longer isoform in insect cells, indicating that the Met(-)(30) site also contributes to eucaryotic protein expression. Forcing translation initiation at Met(-)(30) by optimizing the Kozak consensus sequence surrounding that codon or by mutating the Met(-)(20) codon resulted in preferential expression of the longer SP-A isoform but reduced overall expression of the protein almost 10-fold. Both isoforms were generated to some degree whether translation was initiated at the codon for Met(-)(30) or Met(-)(20), indicating that the site of translation initiation is not the sole determinant of isoform generation and suggesting that either the context of the primary cleavage site is suboptimal or that cotranslational modifications affect cleavage. Preventing N-terminal glycosylation at Asn(1) did not affect the site of signal peptidase cleavage. Disruption of interchain disulfide formation at Cys(-)(1) by substitution with serine markedly enhanced cleavage at the Gly(-)(4)-Ile(-)(3) bond, but substitution with alanine enhanced cleavage at the Cys(-)(1)-Asn(1) bond. We conclude that rat SP-A isoforms arise by a novel mechanism that includes both alternative translation initiation at two in-frame AUGs and a suboptimal context for signal peptidase hydrolysis at the primary cleavage site.


Subject(s)
Codon, Initiator , Membrane Proteins , Peptide Chain Initiation, Translational , Proteolipids/biosynthesis , Pulmonary Surfactants/biosynthesis , Amino Acid Sequence , Animals , Base Sequence , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Processing, Post-Translational , Protein Sorting Signals/metabolism , Proteolipids/genetics , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Proteins , Pulmonary Surfactants/genetics , Rats , Recombinant Proteins/biosynthesis , Serine Endopeptidases/metabolism
7.
Proc Natl Acad Sci U S A ; 97(14): 7829-34, 2000 Jul 05.
Article in English | MEDLINE | ID: mdl-10869427

ABSTRACT

Loss of ovarian function following menopause results in a substantial increase in bone turnover and a critical imbalance between bone formation and resorption. This imbalance leads to a progressive loss of trabecular bone mass and eventually osteoporosis, in part the result of increased osteoclastogenesis. Enhanced formation of functional osteoclasts appears to be the result of increased elaboration by support cells of osteoclastogenic cytokines such as IL-1, tumor necrosis factor, and IL-6, all of which are negatively regulated by estrogens. We show here that estrogen can suppress receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced differentiation of myelomonocytic precursors into multinucleated tartrate-resistant acid phosphatase-positive osteoclasts through an estrogen receptor-dependent mechanism that does not require mediation by stromal cells. This suppression is dose-dependent, isomer-specific, and reversed by ICI 182780. Furthermore, the bone-sparing analogues tamoxifen and raloxifene mimic estrogen's effects. Estrogen blocks RANKL/M-CSF-induced activator protein-1-dependent transcription, likely through direct regulation of c-Jun activity. This effect is the result of a classical nuclear activity by estrogen receptor to regulate both c-Jun expression and its phosphorylation by c-Jun N-terminal kinase. Our results suggest that estrogen modulates osteoclast formation both by down-regulating the expression of osteoclastogenic cytokines from supportive cells and by directly suppressing RANKL-induced osteoclast differentiation.


Subject(s)
Carrier Proteins/metabolism , Estrogens/pharmacology , Membrane Glycoproteins/metabolism , Osteoclasts/cytology , Osteoclasts/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Animals , Bone Marrow Cells/cytology , Bone Resorption , Cell Differentiation , Cells, Cultured , Down-Regulation , Female , Humans , Ligands , Menopause/physiology , Mice , Mitogen-Activated Protein Kinase 8 , Mitogen-Activated Protein Kinases/metabolism , Ovariectomy , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptors, Estrogen/analysis , Receptors, Tumor Necrosis Factor/metabolism , Stromal Cells/metabolism
8.
Am J Respir Cell Mol Biol ; 21(3): 380-7, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10460755

ABSTRACT

Pulmonary surfactant protein-A (SP-A) has been reported to regulate the uptake and secretion of surfactant by alveolar type II cells, to stabilize large surfactant aggregates including tubular myelin, and to protect the surface activity of surfactant from protein inhibitors. In this study we investigated the consequences of overexpression of SP-A on pulmonary homeostasis and surfactant function in transgenic mice. The human SP-C promoter was used to direct synthesis of rat surfactant protein A (rSP-A) in alveolar type II cells and nonciliated bronchiolar cells of the distal respiratory epithelium. Levels of SP-A measured through enzyme-linked immunosorbent assay were 7- to 8-fold higher in lung homogenates and alveolar lavage fluid of the rSP-A mice than in those of transgene-negative littermates. The swimming exercise tolerance and lung compliance of mice bearing the transgene were unchanged. Mean air space sizes seen in randomly selected light-microscopic fields were not significantly different in the transgene-positive and -negative mice by morphometric analysis, but 15% of transgenic animals had scattered foci containing dilated alveoli and alveolar ducts without evidence of inflammation or fibrosis. Some alveolar macrophages contained bar-shaped osmophilic inclusions that had a highly ordered ultrastructure. There were no differences between the transgene-positive and -negative mice in the tissue or alveolar pool sizes of saturated phosphatidylcholine or in the large-aggregate composition of alveolar surfactant. The surface activity of surfactant isolated from the rSP-A mice was similar to that of the controls, but in the presence of protein inhibitors, the surface tension-reducing properties of the rSP-A surfactant were better preserved (P < 0.05). We conclude that overexpression of SP-A does not affect resting surfactant phospholipid levels, but that it enhances the resistance of surfactant to protein inhibition.


Subject(s)
Proteolipids/physiology , Pulmonary Surfactants/physiology , Animals , Bronchoalveolar Lavage Fluid/cytology , Genotype , Glycoproteins/metabolism , Homeostasis/physiology , Humans , Lung/anatomy & histology , Lung/physiology , Macrophages, Alveolar/ultrastructure , Mice , Mice, Transgenic , Models, Genetic , Phospholipids/metabolism , Physical Conditioning, Animal , Proteolipids/chemistry , Proteolipids/metabolism , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein D , Pulmonary Surfactant-Associated Proteins , Pulmonary Surfactants/chemistry , Pulmonary Surfactants/metabolism , Rats , Recombinant Proteins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...