Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Prog ; 104(3_suppl): 368504221096003, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35476554

ABSTRACT

A moored floating platform has great potential in ocean engineering applications because the mooring system is necessary to keep a floating platform in the station. It relates directly to operational efficiency and safety of a floating platform. This study presents a comprehensive assessment of the dynamics of a moored semi-submersible in waves by performing model test and numerical simulation. First, a three-dimensional panel method was used to estimate the motion of a moored semi-submersible in waves. A semi-submersible is modelled as a rigid body with six degrees-of-freedom (6DOF) motion. Dynamic response analysis of a semi-submersible is performed in regular wave and irregular wave. Second, the model test is performed in various wave directions. An Optical-based system is used to measure 6DOF motion of a semi-submersible. Numerical results are compared with the experimental results in various wave directions. Wavelength and wave direction showed significant effects on the motion response of a semi-submersible in regular wave. Third, to obtain a better understanding of response frequencies, the time histories of motion responses in irregular wave are converted from the time domain to the frequency domain. Effects of the wave frequency component on motion responses and mooring dynamics are analyzed. Motion spectrum in irregular wave has a strong response to the natural frequency of a moored semi-submersible and the peak of wave frequency. Finally, exceedance probability is estimated to predict probable extreme values of motion responses of a moored semi-submersible as well as mooring dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...