Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302638, 2024.
Article in English | MEDLINE | ID: mdl-38718016

ABSTRACT

Hydroponics offers a promising approach to help alleviate pressure on food security for urban residents. It requires minimal space and uses less resources, but management can be complex. Microscale Smart Hydroponics (MSH) systems leverage IoT systems to simplify hydroponics management for home users. Previous work in nutrient management has produced systems that use expensive sensing methods or utilized lower cost methods at the expense of accuracy. This study presents a novel inexpensive nutrient management system for MSH applications that utilises a novel waterproofed, IoT spectroscopy sensor (AS7265x) in a transflective application. The sensor is submerged in a hydroponic solution to monitor the nutrients and MSH system predicts the of nutrients in the hydroponic solution and recommends an adjustment quantity in mL. A three-phase model building process was carried out resulting in significant MLR models for predicting the mL, with an R2 of 0.997. An experiment evaluated the system's performance using the trained models with a 30-day grow of lettuce in a real-world setting, comparing the results of the management system to a control group. The sensor system successfully adjusted and maintained nutrient levels, resulting in plant growth that outperformed the control group. The results of the models in actual deployment showed a strong, significant correlation of 0.77 with the traditional method of measuring the electrical conductivity of nutrients. This novel nutrient management system has the potential to transform the way nutrients are monitored in hydroponics. By simplifying nutrient management, this system can encourage the adoption of hydroponics, contributing to food security and environmental sustainability.


Subject(s)
Hydroponics , Nutrients , Hydroponics/methods , Nutrients/analysis , Spectrum Analysis/methods , Lactuca/growth & development , Food Security
2.
Commun Biol ; 4(1): 945, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362999

ABSTRACT

Two challenges that the global wheat industry is facing are a lowering nitrogen-use efficiency (NUE) and an increase in the reporting of wheat-protein related health issues. Sulphur deficiencies in soil has also been reported as a global issue. The current study used large-scale field and glasshouse experiments to investigate the sulphur fertilization impacts on sulphur deficient soil. Here we show that sulphur addition increased NUE by more than 20% through regulating glutamine synthetase. Alleviating the soil sulphur deficiency highly significantly reduced the amount of gliadin proteins indicating that soil sulphur levels may be related to the biosynthesis of proteins involved in wheat-induced human pathologies. The sulphur-dependent wheat gluten biosynthesis network was studied using transcriptome analysis and amino acid metabolomic pathway studies. The study concluded that sulphur deficiency in modern farming systems is not only having a profound negative impact on productivity but is also impacting on population health.


Subject(s)
Agriculture/methods , Fertilizers/analysis , Gliadin/metabolism , Nitrogen/metabolism , Soil/chemistry , Sulfur/administration & dosage , Triticum/drug effects , Program Evaluation , Triticum/growth & development
3.
Funct Integr Genomics ; 20(5): 695-710, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681185

ABSTRACT

A replicated iTRAQ (isobaric tags for relative and absolute quantification) study on developing wheat heads from two doubled haploid (DH) lines identified from a cross between cv Westonia x cv Kauz characterized the proteome changes influenced by reproductive stage water-stress. All lines were exposed to 10 days of water-stress from early booting (Zadok 40), with sample sets taken from five head developmental stages. Two sample groups (water-stressed and control) account for 120 samples that required 18 eight-plex iTRAQ runs. Based on the IWGSC RefSeq v1 wheat assembly, among the 4592 identified proteins, a total of 132 proteins showed a significant response to water-stress, including the down-regulation of a mitochondrial Rho GTPase, a regulator of intercellular fundamental biological processes (7.5 fold) and cell division protein FtsZ at anthesis (6.0 fold). Up-regulated proteins included inosine-5'-monophosphate dehydrogenase (3.83 fold) and glycerophosphodiester phosphodiesterase (4.05 fold). The Pre-FHE and FHE stages (full head emerged) of head development were differentiated by 391 proteins and 270 proteins differentiated the FHE and Post-FHE stages. Water-stress during meiosis affected seed setting with 27% and 6% reduction in the progeny DH105 and DH299 respectively. Among the 77 proteins that differentiated between the two DH lines, 7 proteins were significantly influenced by water-stress and correlated with the seed set phenotype response of the DH lines to water-stress (e.g. the up-regulation of a subtilisin-like protease in DH 299 relative to DH 105). This study provided unique insights into the biological changes in developing wheat head that occur during water-stress.


Subject(s)
Plant Proteins/metabolism , Triticum/growth & development , Triticum/metabolism , Dehydration , Genotype , Phenotype , Plant Proteins/genetics , Proteomics , Triticum/genetics
4.
Nutrients ; 12(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707905

ABSTRACT

Previous research has not considered the effect of high amylose wheat noodles on postprandial glycaemia. The aim of the study is to investigate the effect of consumption of high amylose noodles on postprandial glycaemia over 2-h periods by monitoring changes in blood glucose concentration and calculating the total area under the blood glucose concentration curve. Twelve healthy young adults were recruited to a repeated measure randomised, single-blinded crossover trial to compare the effect of consuming noodles (180 g) containing 15%, 20% and 45% amylose on postprandial glycaemia. Fasting blood glucose concentrations were taken via finger-prick blood samples. Postprandial blood glucose concentrations were taken at 15, 30, 45, 60, 90 and 120 min. Subjects consuming high amylose noodles made with flour containing 45% amylose had significantly lower blood glucose concentration at 15, 30 and 45 min (5.5 ± 0.11, 6.1 ± 0.11 and 5.6 ± 0.11 mmol/L; p = 0.01) compared to subjects consuming low amylose noodles with 15% amylose (5.8 ± 0.12, 6.6 ± 0.12 and 5.9 ± 0.12 mmol/L). The total area under the blood glucose concentration curve after consumption of high amylose noodles with 45% amylose was 640.4 ± 9.49 mmol/L/min, 3.4% lower than consumption of low amylose noodles with 15% amylose (662.9 ± 9.49 mmol/L/min), p = 0.021. Noodles made from high amylose wheat flour attenuate postprandial glycaemia in healthy young adults, as characterised by the significantly lower blood glucose concentration and a 3.4% reduction in glycaemic response.


Subject(s)
Amylose/analysis , Blood Glucose/metabolism , Flour/analysis , Postprandial Period , Triticum/chemistry , Adult , Australia , Body Mass Index , Cross-Over Studies , Female , Food Handling , Humans , Male , Starch/analysis , Young Adult
5.
Food Chem ; 316: 126357, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32062577

ABSTRACT

Molecular interactions in dough are poorly defined but affect final product usage. By monitoring changes in torque as dough is formed, we identified 80-85 °C as a gateway stage determining dough collapse during the mixing/heating process. We propose that this phenomenon is a diagnostic signature linked to integral features of dough complexes formed by some wheat varieties but not others. We found the dough at 80-85 °C was stabilized by increasing the starting bowl temperature (before a standard linear increase in temperature) of the mixing process and demonstrated the significance of specific macromolecular interactions that are formed early in the mixing process. Enzymes including papain, alpha-amylase, glucose oxidase and phytase stabilized dough structure to facilitate transition through the gateway temperatures between 80 and 85 °C. Our results show that if the dough initially formed a protein-starch complex that was too large, instability and collapse of the structure can occur later.


Subject(s)
Triticum/chemistry , Triticum/enzymology , Bread/analysis , Flour/analysis , Heating , Temperature , Torque
6.
Food Chem ; 312: 126038, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31896458

ABSTRACT

To understand wheat dough protein behavior under dual mixing and thermal treatment, solubility of Mixolab-dough proteins were investigated using nine extraction buffers of different dissociation capacities. Size exclusion high performance liquid chromatography (SE-HPLC) and two-dimensional gel electrophoresis (2-DGE) demonstrated that overall changes of protein fractions and dynamic responses of specific proteins during dough processing were well reflected by their solubility variations. After starch pasting, the abundance of 0.5 M NaCl extractable proteins were decreased except for six protein groups including α-amylase inhibitors and superoxide dismutase (SOD). The solubility loss of glutenin proteins at C3 (32 min; 80 â„ƒ) was mainly ascribed to the un-extractable HMW-GSs, LMW-GSs, globulin and triticin, while the extract yield of α-, ß-, γ-gliadins and avenin-like proteins (ALPs) increased after starch pasting. Differential responses of dough proteins to extraction systems provides the basis for further exploring wheat protein dynamics in processing.


Subject(s)
Bread/analysis , Flour/analysis , Triticum/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Gliadin/chemistry , Glutens/chemistry , Solubility , Starch/chemistry
7.
Plant Biotechnol J ; 17(5): 932-944, 2019 05.
Article in English | MEDLINE | ID: mdl-30407713

ABSTRACT

Barley (Hordeum vulgare L.) is a major cereal grain widely used for livestock feed, brewing malts and human food. Grain yield is the most important breeding target for genetic improvement and largely depends on optimal timing of flowering. Little is known about the allelic diversity of genes that underlie flowering time in domesticated barley, the genetic changes that have occurred during breeding, and their impact on yield and adaptation. Here, we report a comprehensive genomic assessment of a worldwide collection of 895 barley accessions based on the targeted resequencing of phenology genes. A versatile target-capture method was used to detect genome-wide polymorphisms in a panel of 174 flowering time-related genes, chosen based on prior knowledge from barley, rice and Arabidopsis thaliana. Association studies identified novel polymorphisms that accounted for observed phenotypic variation in phenology and grain yield, and explained improvements in adaptation as a result of historical breeding of Australian barley cultivars. We found that 50% of genetic variants associated with grain yield, and 67% of the plant height variation was also associated with phenology. The precise identification of favourable alleles provides a genomic basis to improve barley yield traits and to enhance adaptation for specific production areas.


Subject(s)
Crop Production , Genes, Plant/genetics , Hordeum/genetics , Flowers/genetics , Flowers/growth & development , Genes, Plant/physiology , Genetic Variation/genetics , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Hordeum/growth & development , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable
8.
PLoS One ; 13(10): e0205448, 2018.
Article in English | MEDLINE | ID: mdl-30321195

ABSTRACT

Optimising nitrogen fertiliser management in combination with using high nitrogen efficient wheat cultivars is the most effective strategy to maximise productivity in a cost-efficient manner. The present study was designed to investigate the associations between nitrogen utilisation efficiency (NUtE) and the allelic composition of the NAM genes in Australian wheat cultivars. As results, the non-functional NAM-B1 allele was more responsive to the nitrogen levels and increased NUtE significantly, leading to a higher grain yield but reduced grain protein content. Nitrogen application at different developmental stages (mid-tillering, booting, and flowering) did not show significant differences in grain yield and protein content. The NAM-A1 allelic variation is significantly associated with the length of the grain-filling period. While the NAM-A1 allele a was associated with a short to moderate grain-filling phase, the alleles c and d were related to moderate to long grain-filling phase. Thus, selection of appropriate combinations of NAM gene alleles can fine-tune the duration of growth phases affecting sink-source relationships which offers an opportunity to develop high NUtE cultivars for target environments.


Subject(s)
Edible Grain/growth & development , Nitrogen/metabolism , Plant Proteins/genetics , Triticum/growth & development , Alleles , Australia , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genetic Variation , Phenotype , Plant Breeding , Triticum/genetics , Triticum/metabolism
9.
Front Plant Sci ; 9: 1356, 2018.
Article in English | MEDLINE | ID: mdl-30245701

ABSTRACT

Late maturity α-amylase (LMA) and pre-harvest sprouting (PHS) are both recognized as environmentally induced grain quality defects resulting from abnormally high levels of α-amylase. LMA is a more recently identified quality issue that is now receiving increasing attention worldwide and whose prevalence is now seen as impeding the development of superior quality wheat varieties. LMA is a genetic defect present in specific wheat genotypes and is characterized by elevated levels of the high pI TaAMY1 α-amylase, triggered by environmental stress during wheat grain development. TaAMY1 remains present in the aleurone through the harvest, lowering Falling Number (FN) at receival, causing a down-grading of the grain, often to feed grade, thus reducing the farmers' income. This downgrading is based on the assumption within the grain industry that, as for PHS, a low FN represents poor quality grain. Consequently any wheat line possessing low FN or high α-amylase levels is automatically considered a poor bread wheat despite there being no published evidence to date, to show that LMA is detrimental to end product quality. To evaluate the validity of this assumption a comprehensive evaluation of baking properties was performed from LMA prone lines using a subset of tall non-Rht lines from a multi-parent advanced generation inter-cross (MAGIC) wheat population grown at three different sites. LMA levels were determined along with quality parameters including end product functionality such as oven spring, bread loaf volume and weight, slice area and brightness, gas cell number and crumb firmness. No consistent or significant phenotypic correlation was found between LMA related FN and any of the quality traits. This manuscript provides for the first time, compelling evidence that LMA has limited impact on bread baking end product functionality.

10.
Plant J ; 96(6): 1160-1177, 2018 12.
Article in English | MEDLINE | ID: mdl-30230644

ABSTRACT

In wheat (Triticum aestivum) grain yield and grain protein content are negatively correlated, making the simultaneous increase of the two traits challenging. Apart from genetic approaches, modification of nitrogen fertilization offers a feasible option to achieve this aim. In this study, a range of traits related to nitrogen-use efficiency in six Australian bread wheat varieties were investigated under different nitrogen treatments using 3-year multisite field trials. Changes in the individual storage protein composition were detected by high-performance liquid chromatography. Our results indicated that wheat grain yield and grain protein content reacted similarly to nitrogen availability, with grain yield being slightly more sensitive than grain protein content, and that genotype is a vital determinant of grain protein yield. Measurement of the glutamine synthetase activity of flag leaves and developing grains revealed that high nitrogen availability prompted the participation of glutamine in biological processes. In addition, a more significant accumulation of gluten macropolymer was observed under the high-nitrogen treatment from 21 days post-anthesis, and the underlying mechanism was elucidated by a comparative proteomics study. A yeast two-hybrid experiment confirmed this mechanism. The results of this study revealed that peptidyl-prolyl cis-trans isomerase (PPIase) was SUMOylated with the assistance of small ubiquitin-related modifier 1 and that high nitrogen availability facilitated this connection for the subsequent protein polymerization. Additionally, luminal-binding protein 2 in the endoplasmic reticulum played a similar role to PPIase in the aggregation of protein under high-nitrogen conditions.


Subject(s)
Edible Grain/metabolism , Nitrogen/pharmacology , Plant Proteins/metabolism , Triticum/metabolism , Fertilizers , Plant Proteins/genetics , Polymerization/drug effects , Quantitative Trait, Heritable , Sequence Alignment , Sumoylation , Triticum/drug effects , Triticum/genetics , Two-Hybrid System Techniques
11.
Sci Rep ; 8(1): 2499, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410526

ABSTRACT

Wheat (Triticum aestivum) quality is mainly determined by grain storage protein compositions. Sulphur availability is essential for the biosynthesis of the main wheat storage proteins. In this study, the impact of different sulphur fertilizer regimes on a range of agronomically important traits and associated gene networks was studied. High-performance liquid chromatography was used to analyse the protein compositions of grains grown under four different sulphur treatments. Results revealed that sulphur supplementation had a significant effect on grain yield, harvest index, and storage protein compositions. Consequently, two comparative sulphur fertilizer treatments (0 and 30 kg ha-1 sulphur, with 50 kg ha-1 nitrogen) at seven days post-anthesis were selected for a transcriptomics analysis to screen for differentially expressed genes (DEGs) involved in the regulation of sulphur metabolic pathways. The International Wheat Genome Sequencing Consortium chromosome survey sequence was used as reference. Higher sulphur supply led to one up-regulated DEG and sixty-three down-regulated DEGs. Gene ontology enrichment showed that four down-regulated DEGs were significantly enriched in nitrogen metabolic pathway related annotation, three of which were annotated as glutamine synthetase. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment identified three significantly enriched pathways involved in nitrogen and amino acid metabolism.


Subject(s)
Nitrogen/metabolism , Plant Proteins/biosynthesis , Sulfur/deficiency , Triticum/metabolism , Crop Production/methods , Fertilizers/analysis , Grain Proteins/metabolism , Transcriptome , Triticum/genetics , Triticum/growth & development
12.
Food Chem ; 231: 247-257, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28450003

ABSTRACT

Wheat grain proteins responses to mixing and thermal treatment were investigated using Mixolab-dough analysis systems with flour from two cultivars, Ventura-26 (normal amylose content) and Ventura-19 (reduced amylose content). Size exclusion high performance liquid chromatography (SE-HPLC) and two-dimensional gel electrophoresis (2-DGE) analysis revealed that, stress associated and metabolic proteins largely interacted with dough matrix of Ventura-26 after 26min (56°C); gliadins, avenin-like b proteins, LMW-GSs, and partial globulins showed stronger interactions within the dough matrix of Ventura-26 at 32min/C3 (80°C), thereafter, however, stronger protein interactions were observed within the dough matrix of Ventura-19 at 38min/C4 (85°C) and 43min (80°C). Thirty-seven proteins associated with changes in dough matrix due to reduced amylose content were identified by mass spectrometry and mainly annotated to the chromosome group 1, 4, and 6. The findings provide new entry points for modifying final product attributes.


Subject(s)
Flour , Plant Proteins , Bread , Electrophoresis, Gel, Two-Dimensional , Starch , Triticum
13.
Food Chem ; 217: 542-551, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664670

ABSTRACT

Sequential protein behavior in the wheat dough matrix under continuous mixing and heating treatment has been studied using Mixolab-dough samples from two Australian wheat cultivars, Westonia and Wyalkatchem. Size exclusion high performance liquid chromatography (SE-HPLC) and two-dimensional gel electrophoresis (2-DGE) analysis indicated that 32min (80°C) was a critical time point in forming large protein complexes and loosing extractability of several protein groups like y-type high molecular weight glutenin subunits (HMW-GSs), gamma-gliadins, beta-amylases, serpins, and metabolic proteins with higher mass. Up to 32min (80°C) Westonia showed higher protein extractability compared to Wyalkatchem although it was in the opposite direction thereafter. Twenty differentially expressed proteins could be assigned to chromosomes 1D, 3A, 4A, 4B, 4D, 6A, 6B, 7A and 7B. The results expanded the range of proteins associated with changes in the gluten-complex during processing and provided targets for selecting new genetic variants associated with altered quality attributes of the flour.


Subject(s)
Bread/analysis , Flour/analysis , Glutens/analysis , Triticum/chemistry , Australia , Gliadin/analysis , Molecular Weight , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...