Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 29(19): 3578-3592, 2020 10.
Article in English | MEDLINE | ID: mdl-32416000

ABSTRACT

Small population sizes can, over time, put species at risk due to the loss of genetic variation and the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess MHC class I (MHC-I) diversity and its effects on mate choice and survival in the Critically Endangered Raso lark Alauda razae, a species restricted to the 7 km2 islet of Raso, Cape Verde, since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122 individuals, we find no effect of MHC-I genotype/diversity on mate choice or survival. However, we demonstrate that MHC-I diversity has been maintained through extreme bottlenecks by retention of a high number of gene copies (at least 14), aided by cosegregation of multiple haplotypes comprising 2-8 linked MHC-I loci. Within-locus homozygosity is high, contributing to low population-wide diversity. Conversely, each individual had comparably many alleles, 6-16 (average 11), and the large and divergent haplotypes occur at high frequency in the population, resulting in high within-individual MHC-I diversity. This functional immune gene diversity will be of critical importance for this highly threatened species' adaptive potential.


Subject(s)
Genetic Variation , Major Histocompatibility Complex , Alleles , Animals , Gene Dosage , Humans , Inbreeding , Islands , Major Histocompatibility Complex/genetics
2.
Proc Biol Sci ; 287(1922): 20192613, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32126957

ABSTRACT

Small effective population sizes could expose island species to inbreeding and loss of genetic variation. Here, we investigate factors shaping genetic diversity in the Raso lark, which has been restricted to a single islet for approximately 500 years, with a population size of a few hundred. We assembled a reference genome for the related Eurasian skylark and then assessed diversity and demographic history using RAD-seq data (75 samples from Raso larks and two related mainland species). We first identify broad tracts of suppressed recombination in females, indicating enlarged neo-sex chromosomes. We then show that genetic diversity across autosomes in the Raso lark is lower than in its mainland relatives, but inconsistent with long-term persistence at its current population size. Finally, we find that genetic signatures of the recent population contraction are overshadowed by an ancient expansion and persistence of a very large population until the human settlement of Cape Verde. Our findings show how genome-wide approaches to study endangered species can help avoid confounding effects of genome architecture on diversity estimates, and how present-day diversity can be shaped by ancient demographic events.


Subject(s)
Genetic Variation , Passeriformes/genetics , Animals , Endangered Species , Genetics, Population , Genome , Haplotypes , Humans , Inbreeding , Population Density , Sex Chromosomes
3.
Evol Appl ; 8(7): 662-78, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26240604

ABSTRACT

Evaluating the genetic and demographic independence of populations of threatened species is important for determining appropriate conservation measures, but different technologies can yield different conclusions. Despite multiple studies, the taxonomic status and extent of gene flow between the main breeding populations of Black-footed Albatross (Phoebastria nigripes), a Near-Threatened philopatric seabird, are still controversial. Here, we employ double digest RADseq to quantify the extent of genomewide divergence and gene flow in this species. Our genomewide data set of 9760 loci containing 3455 single nucleotide polymorphisms yielded estimates of genetic diversity and gene flow that were generally robust across seven different filtering and sampling protocols and suggest a low level of genomic variation (θ per site = âˆ¼0.00002-0.00028), with estimates of effective population size (N e = âˆ¼500-15 881) falling far below current census size. Genetic differentiation was small but detectable between Japan and Hawaii (F ST ≈ 0.038-0.049), with no F ST outliers. Additionally, using museum specimens, we found that effect sizes of morphological differences by sex or population rarely exceeded 4%. These patterns suggest that the Hawaiian and Japanese populations exhibit small but significant differences and should be considered separate management units, although the evolutionary and adaptive consequences of this differentiation remain to be identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...